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Abstract In this paper, we present, test, and compare two novel methods
to solve the aircraft routing problem with aerial refueling with a multicriteria
objective function. We present a mixed-integer linear program (MILP) that
utilizes a combination of a network transformation and a formulation that
creatively decouples refueling decisions from the nodes within the network.
We also present a dynamic program (DP) that, when coupled with an alter-
native network transformation to account for the multiple criteria within the
objective function, applies a node-labeling approach based on a modification of
Dijkstra’s algorithm. We test and compare these alternative solution methods
on a set of 264 synthetically-generated instances representing 66 combinations
of network size and the frequency of aerial refueling point availability. Invoking
CPLEX using the C++ callable library to solve the MILP and applying the
DP in C++, we found that the application of the DP yields a 98.97% reduc-
tion in the required computational effort, on average, relative to the MILP;
the MILP fails to find an optimal solution within a 3600-second time limit for
selected instances of networks having at least 80 nodes and for all instances
of networks having at least 350 nodes. In contrast, the DP is more robust
than the MILP, as it only requires longer than 3600 seconds to solve selected
instances of networks having over 3000 nodes.
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1 Introduction

In this study, we consider the problem of determining the route for an aircraft
to traverse from a predetermined starting location to a destination while en-
suring enough fuel is on board to complete the trip, and where aerial refueling
is possible at selected intermediary points, depending on the aircraft rout-
ing decision. Within this context, the problem seeks to determine the route
that minimizes a weighted combination of the number of refueling operations
required and the total distance of the route. (In lieu of distance, one may
alternatively consider cost, time, fuel expenditure, or even the difficulty of
the route.) We model this routing problem using a directed acyclic network,
wherein nodes within the network represent spatial points at which routing
decisions and/or aerial refueling operations may occur, and arcs represent the
paths connecting the nodes in the network. Thus, we seek to route an aircraft
from a designated start node to a designated terminus node through a series
of intermediary nodes. For this problem, we assume that the aircraft begins
with a full tank of fuel, and some subset of the intermediary nodes allows for
aerial refueling via a tanker aircraft. Moreover, when visiting an aerial refu-
eling node, an aircraft has the option whether to refuel; a decision must be
made for each such node traversed. For the purpose of this study, if an aircraft
elects to utilize a refueling node, we further assume that the fuel tank is filled.
No partial refueling operations are considered, although such extensions may
be readily examined from the formulations we consider herein.

We note that, if the length of the path is preemptively weighted over the
number of refueling operations conducted and if a path exists through the
network for which refueling operations are not necessary, our problem reduces
to a shortest-path problem which may be solved via Dijkstra’s shortest path
algorithm (see, e.g., Ahuja et al. [1]). In the absence of such a preemptive
weighting and depending upon the topology of the network and the parameters
of its arcs, it may be preferable for an aircraft to refuel en route so that it can
traverse a shorter path than the shortest path that does not require refueling.
The possibility that one path may be shorter than another but require more
fuel to traverse exists because the length of a flight path is not absolutely
correlated with its fuel usage; factors specific to its flight legs (i.e., arcs within
the network) that affect fuel usage include the airspeed of the aircraft, the wind
speed and direction, and the altitude (i.e., air density) of the aircraft. However,
rather than focus on the aforementioned possible preference, we consider herein
only nontrivial problems for which at least one refueling operation is necessary
to traverse the network from the start node to the terminus node.

The aircraft routing problem has been examined extensively within the
commercial airline industry, but the majority of such research does not con-
sider refueling requirements and, as such, is fundamentally different than the
focus of the paper. For example, Barnhart et al. [3] considered a combined
aircraft fleet assignment and routing problem which seeks to assign aircraft to
flight legs and routes such that all flight legs are completed. Desaulniers et al.
[10] examined a similar problem that sought to determine the daily aircraft
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schedule and routes by specifically determining the time of the day for each
flight leg and aircraft used. Biggs-Bartholomew et al. [4,5] examined an air-
craft routing problem in planar two-dimensional Euclidean space using both
global optimization and heuristics. Royset et al. [22] solved a routing problem
specific to military aircraft, incorporating enemy threats, total risk, and fuel
consumption. (See Crino et al. [9], Harder et al. [14], and O’Rourke et al. [20]
for other noteworthy examples of research on optimal military aircraft rout-
ing.) Barnhart et al. [2] provided an extensive survey of the research relevant
to these type of aircraft routing problems. However, this broad category of
research does not address the problem of routing fuel-capacitated aircraft and
the corresponding need to conduct aerial refueling operations en route between
the source and terminus nodes of a network being traversed, and so we look
elsewhere for modeling and solution techniques to inform our approach.

Several recent works have examined aircraft routing problems that incorpo-
rate refueling operations. Bush [8] considered the problem of simultaneously
routing an aircraft, locating a fixed number of aerial refueling points to be
serviced by refueling aircraft based at fixed locations, and determining the
amount of fuel to transfer at each refueling point in order to minimize the
total amount of fuel utilized by both the traversing aircraft and the refueling
aircraft. The author developed and demonstrated a heuristic for constructing
and improving upon a feasible routing and refueling solution. Erdoğan and
Miller-Hooks [12] considered a variation of the vehicle routing problem for
which they accounted for the refueling needs of alternative energy vehicles.
The authors formulated and solved a mixed-integer program to determine a
series of routes, wherein each route must be able to be completed by the ve-
hicle before returning to the starting location to refuel, and from which the
routes are conjoined for the vehicle to visit all customers. Sundar and Rathi-
nam [24] examined the problem of determining the route for an Unmanned
Aerial Vehicle (UAV) through a series of targets and refueling depots such
that all targets are visited while seeking to minimize the total fuel expended.
The authors solved the problem directly using a mixed-integer programming
formulation, and they also developed and tested an approximation algorithm
and an accompanying improvement heuristic.

The combination of the multicriteria objective function and the refueling
requirement in our problem sets it apart from the shortest path problem (SPP)
and most of its previously studied variants. However, research in these areas
does inform our second solution method. There exist several efficient meth-
ods to solve SPP, including Dijkstra’s Algorithm (e.g., see Ahuja et al. [1]
or Bazaraa et al. [6]) and the Bellman-Ford Algorithm [7]. Several endeavors
have examined extensions to the SPP with side constraints (e.g., see [11], [13],
[17], and [21]), wherein an agent seeks to identify the shortest path through
a network, wherein traversing an arc incurs a weight (or utilizes a resource)
and the path cannot exceed a limit on the accumulation of a weight (or ex-
penditure of a resource) at the terminus, and possibly at intermediate nodes
within the network. In our problem, the aircraft’s fuel is a limiting resource
that can be replenished at any of a predetermined subset of the nodes. An



4 Tanya E. Kannon et al.

equivalence exists between our problem and the SPP with side constraints for
two cases. If a feasible path exists between the start node and terminus node
that does not require refueling and the path distance is preemptively weighted
over the number of refueling operations, then our problem is equivalent. It is
also equivalent in the case where every path between the start node and the
terminus node contains at most one refueling node; such a structure parallels
that examined by Irnich and Desaulniers [17] wherein they examine time as
a resource and incorporate deadlines for transiting nodes that relate to our
physical deadline of transiting refueling points before exhausting the supply.
For any other circumstance, the agent has the ability to select among a set of
refueling nodes when refueling is required, so the models and solution methods
for the SPP with side constraints are not extensible. Closer to our problem,
Smith et al. [23] extended the work of Dumitrescu and Boland [11] by con-
sidering instances in which no path exists that does not exceed the weight
accumulation threshold, but in which any one of a subset of predetermined
arcs allows an agent to reset the accumulated weight to zero by traversing it.
The authors developed and tested an effective algorithm to solve this prob-
lem via meta-networks, but they sought only to minimize the length of the
origin-destination path.

In a predecessor to this research that is closely related to the application
examined by Smith et al. [23], Kannon et al. [18] examined the problem of
routing a military aircraft from a starting node through a virtual network to a
destination node, while considering a fuel limit for the aircraft and a subset of
nodes at which the aircraft can replenish its fuel. Seeking strictly to minimize
the length of the origin-destination-origin path, the authors showed this prob-
lem to be NP-hard, and they tested and compared a greedy heuristic with
a node-labeling algorithm that optimally solves the problem. Although the
work of Smith et al. [23] and Kannon et al. [18] differ slightly in their assump-
tions from our problem, they are sufficiently related to motivate our approach.
Herein, we examine a multicriteria objective function that accounts for both
the length of the path and the number of refueling operations conducted, each
of which is of importance for aircraft routing, given the expense of aerial refu-
eling in terms of aircraft, fuel, time, and cost. Whereas the MILP formulation
we present in this paper is new, our DP node-labeling algorithm extends the
method developed by Kannon et al. [18] for a multicriteria objective function
via a network transformation. This network transformation enables a reduced
number of node labels as we employ a dominance check.

Main Contributions: The main contributions of this paper are as follows: (i)
development of a MILP formulation which decouples refueling decisions from
nodes within the network; (ii) expansion of a dynamic programming algorithm
to handle a multicriteria objective; (iii) proof of correctness that the DP is
an optimal algorithm; (iv) robust computational testing on the two solution
methods set forth on networks with various sizes and refuel availability; and
(v) validation for the use of of the model and solution methods for the air
refueling military application.
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The remainder of this paper is organized as follows. In Section 2, we set
forth a mixed-integer linear programming (MILP) formulation on an aug-
mented network that utilizes a temporal modeling approach, as well as a
dynamic programming (DP) node-labeling algorithm that utilizes an alter-
native network transformation to account for the multiple criteria within the
objective function. We test and compare these models in Section 3 with respect
to their required computational effort to solve a set of synthetically-generated
instances that represent a breadth of network sizes and frequencies of aerial re-
fueling point availability. In Section 4, we summarize the contributions of this
research and propose directions for enhancing its utility in future endeavors.

2 Methodology

In this section, we formulate our MILP and present our DP to optimally route
an aircraft from a starting node to a terminus node over a directed network,
with the option to refuel at each of a subset of nodes. Consider the following
definitions common to both approaches:

Problem Statement: We seek to route an aircraft with a fixed fuel capacity
through a network of arc from a designated starting point to a designated
ending point, wherein a subset of the intermediary nodes (i.e., locations at
which two or more arcs connect) are designated as points at which the aircraft
may conduct aerial refueling, and with the objective of minimizing a weighted
combination of the total distance traveled and the number of aerial refueling
operations conducted.

Sets:

– i ∈ N : set of nodes in the network, with a designated start node, s, and
terminus node, t.
– i ∈ NF : the set of nodes in the network at which an aircraft may refuel.
– i ∈ NNF : the set of nodes in the network at which an aircraft may not

refuel.
– Note: we assign the terminus node t ∈ NNF , whereN = NF∪NNF∪{s},

with the caveat that the aircraft is assumed to depart the start node
with a full tank of fuel.

– (i, j) ∈ A: set of directed arcs in the network. For the purpose of this study,
we assume the network contains no cycles.

– G[N,A]: the underlying network.

Parameters:

– cij : the cost (in distance) to traverse arc (i, j).
– fij : the fuel utilized by the aircraft traversing arc (i, j).
– F : the maximum fuel capacity of the aircraft.
– w1: the nonnegative weight placed upon the objective of minimizing the

total distance traveled by the aircraft.
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– w2: the nonnegative weight placed upon the objective of minimizing the
number of refueling operations by the aircraft.

2.1 Mixed-Integer Linear Programming Formulation

In this subsection, we apply a network transformation to enable an MILP
formulation. Given the underlying network G[N,A], we split the nodes i ∈ NF
such that we have one set of nodes NF1 denoting aerial refueling locations
at which the aircraft does refuel, and a second corresponding set of nodes
NF2

denoting the same refueling locations where the aircraft does not refuel.
The resulting augmented set of nodes is denoted N∗, where N∗ = NF1

∪
NF2

∪ NNF ∪ {s}. Arcs (i, j) ∈ A that either enter or emanate from nodes
i ∈ NF are also duplicated accordingly, resulting in an augmented set of arcs,
denoted A∗. The upper bound on the increase in network size for the resulting
transformation is a two-fold increase in the number of nodes and a four-fold
increase in the number of arcs.

Define the set τ ∈ T to be the sequence of routing decisions executed by the
aircraft to traverse from the start node s to the terminus node t. Specifically, we
use this set to signify which arc an aircraft is traversing at each point in time.
Because we assume the network has no cycles, we may set |T | = |N |−1 as the
upper bound on the number of nodes visited by the aircraft upon departing
node s. Furthermore, we define the decision variable xτij = 1 if the aircraft
traverses arc (i, j) ∈ A∗ for decision τ ∈ T , and 0 otherwise. This enables us
to define the decision variable F τ to be the amount of fuel in the aircraft when
making decision τ ∈ T . Within this framework, we propose the formulation
for Model MILP as follows:

MILP: min

w1

∑
(i,j)∈A∗

∑
τ∈T

cijx
τ
ij + w2

∑
(i,j)∈A∗:
j:j∈NF1

∑
τ∈T

xτij

 (1)

subject to
∑

j:(s,j)∈A∗

xτsj =

{
1 if τ = 1
0 ∀ τ ∈ T\{1}

}
, (2)

∑
j:(i,j)∈A∗

xτ+1
ij −

∑
j:(j,i)∈A∗

xτji = 0, ∀ i ∈ N∗\{s, t}, τ ∈ T, (3)

∑
i:(i,t)∈A∗

∑
τ∈T

xτit = 1, (4)

F 1 = F, (5)

F τ ≤ F τ−1 −
∑

(i,j)∈A∗:
j:j∈NNF∪NF2

fijx
τ−1
ij +

∑
(i,j)∈A∗:
j:j∈NF1

Fxτ−1ij , ∀ τ = T\{1},

(6)
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F τ ≤ F, ∀ τ ∈ T\{1}, (7)

F τ −
∑

(i,j)∈A∗

fijx
τ
ij ≥ 0, ∀ τ ∈ T, (8)

xτij ∈ {0, 1}, ∀ (i, j) ∈ A∗, τ ∈ T. (9)

The objective function (1) calculates a weighted combination of the distance
traveled and the number of aerial refueling operations, with the latter compo-
nent conditioned on decisions to traverse arcs into aerial refueling nodes. With
regard to flow balance, Constraint (2) enforces that the aircraft departs node
s at τ = 1, Constraint (3) enforces the conservation of flow at all intermediary
nodes without allowing loitering and/or delays at any node, and Constraint
(4) requires that the aircraft arrive at node t at some point within τ ∈ T ,
the set of decisions. The initial fuel level is set via Constraint (5), and Con-
straint (6) bounds the amount of fuel based on a combination of the routing
decision at each stage and whether the aircraft travels to an aerial refueling
node at stage τ . Constraint (7) bounds the aircraft fuel level by its capacity,
Constraint (8) prevents a decision that would cause the aircraft to run out of
fuel between nodes, and Constraint (9) enforces the binary integer restriction
on the xτij-variables.

2.2 Node Labeling Algorithm

In this subsection, we present a node-labeling dynamic programming algo-
rithm based on Dijkstra’s algorithm [1] with additional label values based on
the A* algorithm [15] and those necessary for the tracking of fuel, as well as a
network transformation that allows the algorithm to solve our problem. Given
the underlying network G[N,A], we again split the nodes i ∈ NF as stipulated
in Section 2.1. We replace the arc costs cij ← ĉij , ∀ (i, j) ∈ A∗, where for arcs
entering refueling nodes (i.e., (i, j) ∈ A∗ : j ∈ NF1), let ĉij = w1cij + w2 and,
for all other arcs, let ĉij = w1cij . This converts our multicriteria objective
function into a network representation for a single objective function, wherein
traversing an arc incurs a weighted sum of the distance traveled and an indi-
cator variable corresponding to whether traversing that arc entails a refueling
operation upon arrival, and which we henceforth refer to as the weighted cost.
What remains is to identify the least s-t weighted cost path through the net-
work, with refueling as necessary enroute to ensure the aircraft does not run
out of fuel.

If applied to solve the SPP for our network G[N∗, A∗], Dijkstra’s algorithm
initializes the nodes with distance labels of 0 for s and ∞ for N∗\{s}, and
initializes a set of permanently labeled nodes initialized as {s}. The algorithm
iteratively considers the set of permanently labeled nodes, creates a label for
each node that can be directly reached from that set if the new label is less
than the existing distance label, and assigns the node with the shortest overall
distance to the set of permanently labeled nodes. This process continues until
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all nodes and their corresponding distance labels are made permanent. The
A* algorithm adds an additional label to each node with a heuristic value for
the approximate distance to the terminus node, enabling a reduction in the
required computational effort.

As developed by Kannon et al. [18] and modified for the network topology
examined herein, we extend the idea of applying labels to nodes, albeit with a
label containing more information than either Dijkstra’s algorithm or the A*
algorithm. Kannon et al. [18], demonstrates the potential for an exponential
number of node labels, which we seek to decrease based on dominance criteria.
Denote the label ` associated with a node to be comprised of: (i) the weighted
cost from the start node wc(`); (ii) the estimated weighted cost to the terminus
node t, e(`); (iii) the fuel level upon arrival f(`), where f(`) = F if ` ∈ NF1

;
(iv) the predecessor node p(`); (v) the label number of the predecessor p`(`);
and (vi) the label number for this node n(`), where (v) and (vi) are necessary
because each node can have multiple labels. The least weighted cost path from
each node to the terminus in the absence of fuel requirements is used for e(`)
as this is a lower bound (i.e., a monotone admissible heuristic function) on the
weighted cost path when fuel is considered.

At the start of the algorithm, the shortest distance path from each node
i ∈ N to the ending location is calculated, which we denote SPi. Using
this information, only the starting node i is given a label with values ` =
(0, SPi, F,−,−, 1), which assumes the aircraft starts with a full tank of fuel.
The algorithm then sets the current node, denoted c`, to the starting location
and makes the only label (` which is associated with the starting node) to
be the current permanent label L. The algorithm proceeds by examining all
neighbors of the current node (i.e., i : (c`, i) ∈ A∗) and, if f(L)−fc`i ≥ 0 (i.e.,
the aircraft will not run out of fuel when traversing the arc), assigns labels in
the following manner. For a neighboring node i ∈ NNF ∪ NF2 ∪ {t}, we add
the label

(wc(L) + ĉc`i, SPi, f(L)− fc`i, c`, p`(L), k + 1), (10)

where the weighted cost is calculated as the weighted cost to travel from c` to
i, the estimated distance to the ending location is exactly the shortest distance
path without regard to fuel; the fuel is calculated based on the current fuel
level f(L) minus the fuel it takes to traverse (c`, i); the predecessor is set to
the current location c`; the label of the predecessor is calculated based on the
label number of L; and the label number for node i is incremented, where k,
initialized at 0 is the current number of labels associated with node i. For a
neighboring node i ∈ NF1

, the following label is added, with only the third
entry differing from Equation (10) to account for the refueling operation upon
arrival

(wc(L) + ĉc`i, SPi, F, c`, p`(L), k + 1). (11)

We also invoke the following label dominance criteria as a component of our
node-labeling algorithm. First, consider a node i ∈ NF1

, at which an aircraft
refuels upon arrival. If a node label ` is added to node i ∈ NF1

, and it has a
weighted cost wc(`) strictly less than a label ¯̀ already associated with node i,
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we can conclude that ¯̀ will not lead to an optimal solution; ` is dominated by
¯̀. The same can be said in the reverse direction; a label ` should be not added
to a node i ∈ NF1

if there exists a (dominating) label ¯̀ already associated
with i having a lesser weighted cost. Alternatively, consider a node i /∈ NF1

,
i.e., a node at which an aircraft does not refuel. The previous domination
criterion based on weighted cost alone does not apply because the fuel levels
f(`) and f(¯̀) may differ; a label that dominates another with respect to the
weighted cost alone may not have the required fuel necessary to complete a
path to the terminus node t, whereas a label with a greater weighted cost may
have sufficient fuel. Therefore, without loss of generality, we identify a label `
associated with node i 6∈ NF1

as being dominated by a label ¯̀ associated with
node i if both wc(`) < wc(¯̀) and f(`) ≥ f(¯̀). These criteria collectively cause
the node-labeling algorithm to disregard labels with a greater weighted cost
and the same or a lesser amount of fuel.

Emulating Dijkstra’s algorithm with A∗ algorithmic enhancements, we
make permanent the label – instead of the node – having the current smallest
sum of the weighted cost plus the estimate cost value. The current node is then
set to the node for which this label is associated, and the algorithm continues
by examining the neighbors of this node. When a label associated with the
terminus is made permanent, the algorithm terminates. The route traversed
by the agent can be determined via post-processing by tracking back through
the predecessor labels. We now prove the correctness of this optimal algorithm.

Theorem 1 The DP algorithm for the aircraft routing problem with refueling
is an optimal algorithm.

Proof The algorithm terminates when a label ` associated with the terminus
node is made permanent, which is claimed to correspond to the optimal min-
imum cost path while adhering to fuel and replenishment constraints, and for
which the s-t path can be determined by tracing back using the predecessor
node and predecessor label number. Denote this path p, with the label ` made
permanent by the algorithm because it has the smallest value for wc(`) + e(`),
where e(`) = 0 because ` is associated with the terminus node t, signifying
that the cost of p is exactly wc(`).

We make the following observation to aid with the proof: all feasible fuel
paths can be attained via an expansion of node labels. That is, there does
not exist a feasible fuel path which cannot be found by continuing the node-
labeling technique described via the DP where, in the worst case, the DP
enumerates all s-t paths through an acyclic network.

Assume that p is not an optimal path. Therefore, there exists a different
path p̄ having a lower weighted cost that adheres to the fuel constraints and
refueling possibilities. Consider the existing labels in the stage of the algorithm
at which the label ` is made permanent. The optimal path p̄ to the terminus
node must emanate from a different label than `, either a non-permanent or
a permanent label. However, all non-permanent labels in the network have a
value for wc(`) + e(`) (i.e., the weighted cost plus estimated cost, the latter of
which is a lower bound on the actual cost) at least as large as wc(`). Hence, no
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non-permanent label can be associated with p̄. Moreover, all permanent labels
were examined at this stage, resulting in additional labels to neighboring nodes
if applicable. Therefore, if there exists a permanent label ¯̀ associated with p̄,
then there exists at least one non-permanent label also associated with p̄,
which we have shown does not exist. Therefore, p̄ does not exist. ut

3 Computational Testing and Evaluation

In this section, we develop a battery of test instances of varying network size
and the frequency of aerial refueling point availability, and we examine the
relative performance of our solution methods with regard to their required
computational effort and optimality gap.

To test the performance of the two solution methods, we randomly gen-
erated single-source, single-sink fully connected acyclic networks as follows.
Given a user-defined network size of |N | nodes, denoted {s, 1, 2, ..., |N | −
3, |N | − 2, t}, a directed arc (i, j) initially exists if i < j, if i = s, or if j = t.
This network topology results in every intermediary node lying on an s-t path
and prevents the generation of leaf nodes (or even branches) that would serve
no purpose for an aircraft traversing a network. For each instance, we utilized
F = 26000 based on the fuel capacity (measured in pounds) of an F22 Raptor
with two external fuel tanks (see Lockheed Martin Inc. [19] for selected aircraft
specifications), and we randomly generated integer-valued fij-parameters for
each arc (i, j) using the discrete uniform distributions shown in Table 1. For
the purpose of fij-parameter generation, we number node s as 0, and we num-
ber node t as |N |−1. As a baseline, we selected U [5400, 6000] when (j− i) = 1
for the fuel usage over an arc (i.e., a single flight leg), and the successive dis-
tributions in Table 1 ensure that the triangle inequality holds, e.g., such that
it requires less fuel to fly directly from node i to node i + 2 than by flying
through node i+1 enroute. In general, the distribution for (j− i) = k is gener-
ated on U [lk, uk], where uk = lk−1 + l1 and where lk is some percentage of uk.
For our instance parameter generation, as represented in Table 1, we utilized
lk = 0.9uk. We completed the network topology for our instances by removing
arcs when fij > F (which necessarily occurs for (j− i) > 7 in accordance with
Table 1), as an aircraft would run out of fuel if it attempted to traverse such
an arc.

Table 1 Distributions utilized for fij-values

(j − i) Distribution
1 U [5400, 6000]
2 U [9720, 10800]
3 U [13608, 15120]
4 U [17107, 19008]
5 U [20256, 22507]
6 U [23091, 25656]
7 U [25642, 28491]
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Once the network instance topology was finalized, we generated cij-parameters
to be cij = U [0.95, 1.05]ψfij , ∀ (i, j) ∈ A, with ψ = 1600

18000 . Herein, the value
for ψ converts the fuel consumption required to traverse an arc into a distance
measurement (in nautical miles) based on the ratio of the unclassified estimate
of the F22’s range to its internally-stored fuel capacity [19], whereas the dis-
crete uniform distribution U [0.95, 1.05] imposes a random element to reflect a
variance in flight profiles (i.e., speed and altitude) between arcs. Finally, we se-
lect w1 = 1 and w2 = 100, where w2 approximates the opportunity cost in the
distance not traveled (in nautical miles) due to the conduct of an aerial refuel-
ing operation, thereby converting all components of our objective function to
common units. To conclude our instance generation, given a user-defined pa-
rameter m that indicates the lexicographic frequency of aerial refueling point
availability, we designated each intermediary node i ∈ N as optional for aerial
refueling (i.e., i ∈ NF ) if i (mod m) = 0, and i ∈ NNF otherwise. Figure 1
illustrates an instance of the resulting network topology for (|N |,m) = (10, 2),
with the (cij , fij)-parameters shown for each arc and with each of the nodes
in NF encircled twice.
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Fig. 1 Example instance with (|N |,m) = (10, 2)
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As a block design for testing, we generate a total of 264 instances, four
instances each of 66 combinations of variations in the two user-defined param-
eters: network size, |N | = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150, 200, 250, 300, 350, 400, 450, 500; and the lexicographic frequency of aerial
refueling point availability, m = 2, 3, 4. Although it is possible to examine in-
stances with m ≥ 5, such a case may yield an infeasible problem wherein the
minimum fuel required between two optional refueling nodes exceeds F , and
so we restrict our attention in this study to problems we know to be feasible,
thereby isolating our testing to examine the relative utility of the solution
methods. For each of our 264 test instances, we solved Model MILP using
CPLEX (Version 12.5) invoked through the C++ callable library and via our
DP algorithm using C++. All runs were implemented on a computer having
an Intel Core i5 Processor (3.1 GHz speed) and 12 GB of RAM. We invoked
CPLEX with a relative optimality tolerance of ε = 0.01, and we terminated
either solution method if an optimal solution was not reported within 3600
seconds (i.e., one hour).

To compare the respective efficacy of the solution methods, we capture
for each (|N |,m)-combination the average required computational effort and,
for the MILP, the average relative optimality gap (%) upon termination. We
calculate the average optimality gap attained by the MILP using two methods.
The first method is denoted as the attained optimality gap, computed as the
absolute gap between the lowest feasible upper bound and the greatest lower
bound returned by CPLEX, divided by the greatest lower bound returned by
CPLEX.1 The second method is the actual optimality gap, computed as the
absolute gap between the lowest feasible upper bound returned by CPLEX
and the optimal objective function value attained by the DP, divided by the
optimal objective function value attained by the DP. Whenever the attained
and actual optimality gaps are close, the lower bound identified by CPLEX is
tight.

Table 2 reports these assessment measures for both the MILP and DP.
The first two columns tabulate the number of nodes |N | in the network and
the frequency-of-aerial-refueling frequency parameter m. The following three
columns represent the Attained Optimality Gap (%), the Actual Optimality
Gap (%), and the required computational effort for the MILP. The last column
represents the computational effort required for the DP solution method. An
individual cell represents the average of the measures for the four instances for
a given (|N |,m)-combination. For an instance for which the MILP terminates
without attaining an optimal solution within the specified time limit, we use
3600 seconds in the calculation of the respective average required computa-
tional efforts. For many of the larger networks, CPLEX was unable to identify
a feasible solution within the one hour time limit; we identify these results in
Table 2 by †i for the number i out of 4 instances for which this occurred.

1 We use the attained optimality gap rather than the relative optimality gap reported
directly by CPLEX, as the commercial solver computes its reported gap by dividing the
the absolute optimality gap by the magnitude of the best integer-feasible objective function
value [16] (i.e., the lowest feasible upper bound).
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Table 2 Average Required Computational Effort and Optimality Gap for Model and
(|N |,m)-combinations. †i indicates that i out of 4 instances did not find a feasible solu-
tion within the 3600 second time limit.

MILP DP
Attained Actual

|N | m Opt. Gap (%) Opt. Gap (%) Time (s) Time (s)

10 2 0.00% 0.00% 0.023 0.001
3 0.00% 0.00% 0.017 0.001
4 0.00% 0.00% 0.020 0.001

20 2 0.00% 0.00% 0.138 0.005
3 0.00% 0.00% 0.122 0.004
4 0.00% 0.00% 0.153 0.004

30 2 0.00% 0.00% 0.532 0.024
3 0.00% 0.00% 0.365 0.014
4 0.00% 0.00% 0.440 0.012

40 2 0.00% 0.00% 1.335 0.040
3 0.00% 0.00% 1.044 0.028
4 0.00% 0.00% 3.473 0.022

50 2 0.00% 0.00% 2.883 0.083
3 0.00% 0.00% 2.276 0.049
4 0.00% 0.00% 25.548 0.035

60 2 0.00% 0.00% 4.743 0.118
3 0.00% 0.00% 4.904 0.077
4 0.00% 0.00% 217.365 0.052

70 2 0.00% 0.00% 8.589 0.189
3 0.00% 0.00% 6.140 0.102
4 0.00% 0.00% 758.113 0.073

80 2 0.00% 0.00% 13.590 0.258
3 0.00% 0.00% 10.519 0.134
4 2.43% 0.00% 3600.000 0.102

90 2 0.00% 0.00% 24.238 0.323
3 0.00% 0.00% 16.583 0.186
4 2.40% 0.01% 3600.000 0.131

100 2 0.00% 0.00% 36.845 0.432
3 0.00% 0.00% 31.796 0.226
4 3.88% 0.14% 3600.000 0.180

110 2 0.00% 0.00% 58.333 0.531
3 0.00% 0.00% 37.522 0.284
4 3.36% 0.04% 3600.000 0.206

120 2 0.00% 0.00% 81.739 0.619
3 0.00% 0.00% 69.584 0.354
4 5.36% 0.25% 3600.000 0.249

130 2 0.00% 0.00% 119.983 0.767
3 0.00% 0.00% 77.917 0.402
4 5.29% 0.28% 3600.000 0.301

140 2 0.00% 0.00% 144.112 0.891
3 0.00% 0.00% 115.356 0.501
4 6.15% 0.44% 3600.000 0.352

150 2 0.00% 0.00% 378.677 1.078
3 0.00% 0.00% 236.538 0.569
4 6.68% 0.82% 3600.000 0.416

200 2 0.00% 0.00% 1054.702 2.047
3 0.00% 0.00% 1413.537 1.151
4 10.49%†1 2.72%†1 3600.000 0.870

250 2 0.57% 0.11% 3125.260 3.448
3 0.07% 0.00% 2660.795 1.836
4 32.75% 23.27% 3600.000 1.594

300 2 38.18% 36.15% 3600.000 5.591
3 1.39%†2 0.00%†2 3600.000 2.935
4 -†4 -†4 3600.000 2.300

350 2 52.51% 48.19% 3600.000 7.695
3 45.17% 41.86% 3600.000 4.247
4 40.44% 24.24% 3600.000 3.157

400 2 55.02% 48.32% 3600.000 12.449
3 -†4 -†4 3600.000 6.091
4 -†4 -†4 3600.000 4.391

450 2 56.17% 49.06% 3600.000 14.312
3 -†4 -†4 3600.000 10.298
4 46.64% 24.47% 3600.000 8.009

500 2 56.27% 48.84% 3600.000 18.952
3 51.13% 43.89% 3600.000 10.466
4 -†4 -†4 3600.000 8.760
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Upon examination of the results reported in Table 2, immediately visible is
the scalability difference between the solution methods as the number of nodes
increases. The DP scales extremely well; it has an average elapsed time below
15 seconds for all but one of the (|N |,m)-combinations. The slowest perfor-
mance observed for an instance by the DP was 19.449 seconds. In contrast,
the MILP does not scale well; CPLEX terminates due to the limit on compu-
tational effort for all instances having |N | ≥ 350, with the time limit being
reached for test instances starting at the moderately sized networks having
|N | = 80 nodes. Further, CPLEX is unable to find a feasible solution for 23
of the test instances within the one hour time limit, with the smallest such
instance having |N | = 200 nodes. From this we can conclude that using the
MILP – even as a heuristic – is not a viable option for the application at hand
for larger networks. Moreover, the larger-sized networks for which the MILP
does attain solutions yields large optimality gaps at termination. Given the
attained and actual optimality gaps are close for such instances, future efforts
should focus on the determination of high quality feasible solutions rather than
improved relaxations if the MILP is to be a viable solution method.

Also identifiable is the trend that the DP requires more computational ef-
fort, on average, when aerial refueling locations are more plentiful (i.e., with
greater frequency corresponding to a lower m value) for a given number of
nodes in the network, |N |. This trend is directly impacted by the network
transformation we utilize, wherein the augmented graph has an almost 50%
increase in the number of nodes when m = 2, compared to a nearly 25% in-
crease when m = 4. For example, an original 200 node network is augmented to
299-, 266-, and 249-node networks for m = 2, 3, 4, respectively. An interesting
trend is also present when examining the computational times for the MILP.
For more than half of the |N | tests the average required computational effort
is lowest when m = 3, highest for m = 4, with m = 2 in the middle. While the
authors do not have a definitive explanation for this trend, we speculate that
CPLEX performs best when there are a moderate number of refueling options
(m = 3) and struggles when there are too many (m = 2) or too few (m = 4),
corresponding to a larger size of the formulation and a greater challenge in
finding a feasible solution, respectively.

Because it has been observed that the DP scales well as the number of
nodes |N | increases, we performed a secondary set of experiments to test the
DP on much larger networks. The purpose of these experiments is to roughly
determine the maximum network size (in terms of nodes) such that the DP
can be used as a real-time decision making tool. Maintaining the same exper-
imental design, we generate four test instances each for networks with |N | =
550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1250, 1500, 1750, 2000, 2250,
2500, 2750, 3000, 3250, 3500, 3750, 4000 and m = 2, 3, 4. For these tests, no time
limit is set, and the DP is run until the optimal solution is attained and the
elapsed computational time is recorded. Results for this set of experiments are
presented in Figure 2. Observable in Figure 2 is that the computational effort
required for the DP to attain an optimal solution first exceeds 3600 seconds
when |N | = 3000 for m = 2, and when |N | = 3750 for m = 3, 4. It is rare to
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Fig. 2 Average Required Elapsed Time for the DP when tested on networks with an in-
creasing number of nodes.

encounter networks of this large size for the application at hand (e.g., see [18]).
Hence, the tractability of up to approximately 3000 node-sized problems for
solution via the DP is a quite promising result that demonstrates its viability
as a solution method.

4 Conclusions and Recommendations

In this paper, we have studied and compared a mixed-integer linear mathe-
matical programming formulation and a dynamic programming approach to
model and solve the problem of routing an aircraft over a directed network
without cycles, with a fixed aircraft fuel capacity and a subset of nodes at
which the aircraft may conduct an aerial refueling. Both of these solution
methods sought to minimize the same objective, a weighted combination of
the distance traveled and the number of required aerial refueling operations.
Considering their performance over a battery of 264 representative test in-
stances that reflected 66 combinations of variations in network size and the
frequency of aerial refueling point availability, we found that the DP is robust
in terms of network size and the required computational effort necessary to
attain an optimal solution, whereas the MILP fails to be a viable solution
method for larger-sized networks based on its inability to find optimal solu-
tions, or even feasible solutions for some instances, within a one hour time
limit.
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For future study, we propose the further comparison of the two solution
methods examined herein, but within the context of a stochastic optimization
problem. A shortcoming to this study is the assumption that the fuel used
by an aircraft between any two nodes is deterministic. On the contrary, there
exists variance in fuel consumption rates based on the aircraft’s engine type,
airspeed, altitude, engine maintenance, and fuel quality, as well as the man-
ner in which the aircraft is flown, which vary by pilot, weather, and enemy
threat. Prior to conducting the stochastic study, we recommend implementing
our dynamic programming node-labeling algorithm, but with a modification
to existing constraints such that the fuel in the aircraft upon arriving at any
node must be greater than some minimum level other-than-zero, thereby safe-
guarding against a variance in fuel consumption ratios.
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