
European Journal of Operational Research 223 (2012) 794–806
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Innovative Applications of O.R.

Restoring infrastructure systems: An integrated network design and scheduling
(INDS) problem

Sarah G. Nurre a,1, Burak Cavdaroglu a,2, John E. Mitchell b, Thomas C. Sharkey a,⇑, William A. Wallace a,2

a Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
b Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 June 2011
Accepted 5 July 2012
Available online 16 July 2012

Keywords:
Infrastructure restoration
Extreme events
Network design
Scheduling
Dispatching rules
0377-2217/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.ejor.2012.07.010

⇑ Corresponding author. Tel.: +1 518 276 2958.
E-mail address: sharkt@rpi.edu (T.C. Sharkey).

1 The work of this author was supported by a S
Rensselaer Polytechnic Institute (RPI) Excellence in Eng

2 The work of this author was supported by the
Security under Award Number: 2008-ST-061-ND 000
contained in this document are those of the authors an
necessarily representing the official policies, either ex
Department of Homeland Security.
We consider the problem of restoring services provided by infrastructure systems after an extreme event
disrupts them. This research proposes a novel integrated network design and scheduling problem that
models these restoration efforts. In this problem, work groups must be allocated to build nodes and arcs
into a network in order to maximize the cumulative weighted flow in the network over a horizon. We
develop a novel heuristic dispatching rule that selects the next set of tasks to be processed by the work
groups. We further propose families of valid inequalities for an integer programming formulation of the
problem, one of which specifically links the network design and scheduling decisions. Our methods are
tested on realistic data sets representing the infrastructure systems of New Hanover County, North Car-
olina in the United States and lower Manhattan in New York City. These results indicate that our methods
can be used in both real-time restoration activities and long-term scenario planning activities. Our mod-
els are also applied to explore the effects on the restoration activities of aligning them with the goals of an
emergency manager and to benchmark existing restoration procedures.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The restoration of services provided by infrastructure systems is
critical for society to recover from extreme events. Therefore, the
managers of these systems are faced with demanding choices in
formulating their restoration efforts after the event. This research
proposes a novel class of integrated network design and scheduling
problems that can be used to model the formulation of these res-
toration efforts. The infrastructure system is modeled as a network,
where flows in it represent the services provided by the system
(see, e.g., Lee et al., 2007). Damage to the components of the infra-
structure is then modeled as the removal of nodes and arcs in the
network. The restoration efforts associated with the infrastructure
will focus on installing or repairing physical components within
the system and can be modeled as installing nodes and arcs into
the network. Therefore, we can view this selection of nodes and
arcs as network design decisions. Traditional network design prob-
lems are often only concerned with the performance of the end
ll rights reserved.

andia National Laboratories/
ineering Research Fellowship.

US Department of Homeland
1. The views and conclusions
d should not be interpreted as
pressed or implied, of the US
design of the network; however, the driving performance metric,
especially in the eyes of the public, in evaluating the restoration
efforts is how well the services provided by the system come back
online. This means that the network design decisions will be eval-
uated as they are being implemented, so that the scheduling deci-
sions associated with them will have a significant impact on the
objective. In particular, the performance of the network at time t,
which is composed of the original network plus the nodes and arcs
completed by t, will be evaluated by determining the (weighted)
amount of flow that can be sent from supply nodes to demand
nodes. This directly models the focus of the restoration efforts: it
is on restoring services rather than on the monetary cost of the
efforts.

The analysis of civil infrastructure systems is complex since
they are interdependent (see O’Rourke, 2007); disruptions in one
can spread to others causing cascading failures (see Wallace
et al., 2003; Mendonca and Wallace, 2006; Chang et al., 2007).
Rinaldi et al. (2001) note that managers of the infrastructure sys-
tems have become inclined to consider these interdependencies;
however, the managers of a particular infrastructure will have little
knowledge of the structure and operations of the other systems.
We can expect that the managers of an individual infrastructure
will understand the direct connections of it with other infrastruc-
tures and, therefore, can weigh the services provided to certain
connections more heavily (e.g., a hospital has a higher weight than
a residential household). Our class of problems can be used to
model this situation and, further, explore the effects on the
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restoration plan of an infrastructure when we consider these
interdependencies.

There has been some research done on problems related to our
class of integrated network design and scheduling problems. Guha
et al. (1999) develop approximation algorithms for problems con-
cerned with installing nodes into a power network to recover from
disruptions; however, this work assumes that demand nodes sim-
ply need to be connected to supply nodes and thus does not model
the capacity limitations of the system. Ang (2006) develops an
integer programming formulation of the problem of scheduling
the installation of a set of nodes and arcs into a power network
in order to minimize the cost of power-shedding over time. This
model focuses on the recovery efforts and therefore requires that
all nodes and arcs are installed, meaning that it does not model
the network design decisions often associated with the restoration
efforts of an infrastructure after an extreme event. The integer pro-
gramming formulation of Ang (2006) was only able to find solu-
tions within 7% of optimal within an hour for a network with
300 nodes and, therefore, may not support real-time decision-mak-
ing, especially on large-scale networks. Xu et al. (2007) apply a ge-
netic algorithm to a problem associated with restoring power after
an earthquake. The objective of this problem minimizes the aver-
age time that each customer is without power; therefore, this
problem does not prioritize demand to critical points within the
infrastructure. Matisziw et al. (2010) propose an integer program-
ming model in order to restore networks where connectivity be-
tween pairs of nodes is the driving performance metric
associated with the network. Cavdaroglu et al. (forthcoming)
examined a model to determine the restoration efforts of a set of
interdependent infrastructure systems. However, this work as-
sumes that an individual infrastructure system fully understands
the operations of the other systems. This means that it knows
the exact network structure and operational decisions of the infra-
structure based on the amount of services provided to it. It would
be more reasonable to assume that an individual infrastructure
system understands its connections to other systems and can thus
prioritize services provided to these connections. It may not be
appropriate to apply the model of Cavdaroglu et al. (forthcoming)
to the restoration efforts of a single infrastructure, especially when
there is not a centralized coordinator in the emergency response
efforts.

This paper proposes an integrated network design and schedul-
ing problem that can be applied to the restoration efforts of a vari-
ety of infrastructure systems. This problem focuses on selecting a
set of nodes and arcs for installation into a network and then
scheduling them on a set of parallel identical work groups. Once
a node or arc is processed by one of these work groups, it becomes
operational in the network and flow can be routed through it or
over it. At each time period, the performance of the network is
evaluated by determining the maximum amount of (weighted)
demand that can be sent from a set of supply nodes to a set of
demand nodes over the operational network (i.e., the original
network plus those nodes and arcs completed by the work groups
by this time). The objective function of this problem then focuses
on maximizing the cumulative performance of the network over
a finite horizon.

We propose an integer programming formulation of this prob-
lem and discuss valid inequalities for it that improve the effective-
ness of solving it with a commercial software package. One of these
inequalities specifically links the network design and scheduling
decisions. This integer programming formulation can be useful in
the long-term scenario planning activities for the managers of
the infrastructure systems. These activities increase the prepared-
ness of the managers and, therefore, will result in more effective
decision-making after an actual extreme event. However, the time
required to solve the integer programming formulation may
prohibit it from being useful in the real-time restoration activities
after an extreme event. Therefore, we propose a heuristic dispatch-
ing rule for this problem that integrates fundamental concepts
from network flows (the residual network optimality conditions)
and scheduling (the weighted shortest processing time dispatching
rule). The rule focuses on selecting the next set of tasks to be pro-
cessed by the resources rather than traditional dispatching rules
that simply focus on selecting the next individual task to be pro-
cessed. This dispatching rule is shown to provide near-optimal
solutions (typically on the order of 2–3% of optimal for case studies
where the optimal solution is known) to realistic data sets and can
be utilized in real-time restoration activities. Both the dispatching
rule and integer programming formulation (with its valid inequal-
ities) are tested extensively on realistic data sets representing
infrastructure systems in New Hanover County, North Carolina in
the United States and lower Manhattan in New York City. These re-
sults demonstrate the power of our proposed methods along with
providing insight into the impact on the restoration plan of an
infrastructure when it is aligned with the priorities of the emer-
gency managers of the region.

The remainder of this paper is organized as follows. Section 2
provides the mathematical formulation of our integrated network
design and scheduling problem. Section 3 focuses on optimization
methods to solve the problem including the heuristic dispatching
rule (Section 3.1) and valid inequalities (Section 3.2). Section 4 ap-
plies our optimization methods for the integrated network design
and scheduling problem on realistic case studies associated with
infrastructure systems of New Hanover County, North Carolina.
These case studies were created through collaborations with man-
agers of these infrastructure systems and the emergency manager
of the County. Section 5 focuses on case studies associated with the
power infrastructure of lower Manhattan in New York City. We
provide concluding remarks in Section 6.
2. The integrated network design and scheduling problem

The mathematical model of our integrated network design and
scheduling (INDS) problem involves a network G = (N,A) where N is
the set of nodes and A is the set of arcs. The node set N and arc set A
can be viewed as the ‘operational network’ immediately after the
extreme event, i.e., these sets represent the components of the
infrastructure that are unaffected by the event. There is a set of
supply nodes, S # N, and a set of demand nodes, D # N. Each
arc (i, j) 2 A has an associated capacity uij while each supply node
i 2 S has a supply capacity si per time period and each demand
node i 2 D has a demand di per time period. We are interested in
sending flow (respecting the flow capacities of the arcs and the
supply/demand capacities of the nodes) from the supply nodes to
the demand nodes where each unit of flow that arrives at demand
node i 2 D is given a weight of wi. The performance of the network
is evaluated by determining the maximum amount of weighted
flow that can be sent from the supply nodes to the demand nodes.
There is a set of arcs, A0, that we can install into the network. With-
out loss of generality, this can model problems where we can in-
stall both nodes and arcs into the network since a node can be
‘split’ into two nodes and an arc. We are interested in scheduling
a subset of the arcs in A0 onto a series of parallel identical work
groups, k = 1, . . ., K, in order to install them into the network. The
identical work group assumption is practical in the context of sin-
gle infrastructure restoration since the differences between the
work crews are often negligible with respect to the units used to
measure the processing times. Each arc (i, j) 2 A0 has an associated
processing time, pij, and capacity, uij. We assume, without loss of
generality, that the processing times are integral. We further as-
sume that we are in a non-preemptive environment so that a task
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must be processed without interruption. We will evaluate the net-
work at time t by determining the maximum weighted flow, which
we denote by ft, that can be sent through the operational network,
G(t) = (N,A [ A0(t)) where A0(t) is the set of arcs completed by time t.
The objective function of our integrated network design and sched-
uling problem will then measure how well the network comes on-
line, i.e., we will maximize

XT

t¼1

ltft;

where lt provides the weight we associate with the performance of
the network at time t. Note that our model does not require for the
network to be fully restored by time T. The INDS problem was pro-
ven to be NP-hard even for problems with a single work group, sin-
gle supply node, and single demand node in Nurre and Sharkey
(2010).

2.1. An integer programming formulation

We now propose an integer programming formulation for the
INDS problem. One of the difficulties with utilizing integer pro-
gramming in order to solve the INDS problem is that modeling
the sequencing decisions associated with the scheduling compo-
nents of this problem requires a large number of variables. Typi-
cally, the sequencing decisions are either modeled with binary
decisions variables representing the decision that task ‘ comes di-
rectly before task ‘0 on work group k or modeled with binary deci-
sion variables representing the decision that task ‘ is being
completed by work group k at time period t. In our collaborations
with the managers of the infrastructure systems in the areas repre-
sented by our data sets, we were able to identify the typical hori-
zon for the restoration efforts and the units associated with the
processing times of the tasks. These parameters determine the
number of time periods in the problem, which turned out to be
much smaller than the number of potential arcs in A0 (our set of
tasks). Therefore, we have chosen to model the sequencing deci-
sions with ‘time-indexed’ decision variables.

We further note that time-indexed formulations of scheduling
problems lead to linear programming relaxations that are typically
stronger than other formulations (e.g., Sousa and Wolsey, 1992;
Savelsbergh et al., 2005). Integer programming formulations and
solution approaches of scheduling problems are discussed in Sousa
and Wolsey (1992), Schulz (1996), Akker et al. (1999), Waterer
et al. (2002), Möhring et al. (2003), and Correa and Schulz
(2005). The objective functions considered in these works are
either makespan or weighted completion time, so it is only neces-
sary to use variables that represent the completion times of the
tasks. We will leverage these traditional time-indexed formula-
tions by introducing variables to track if a task is operational
(i.e., has flow on it) in the network and, therefore, must have been
completed by one of the resources.

The variables in the integer programming formulation of the
INDS problem can be broken down into three types of variables:
(i) network flow variables, (ii) network design variables, and (iii)
scheduling variables. The network flow variables include continu-
ous variables xijt for (i, j) 2 A [ A0 and t = 1, . . ., T that represent the
flow on arc (i, j) in time period t and continuous variables vit for
i 2 D that represent the amount of demand met at node i in time
period t. The network design variables include binary variables bijt

for (i, j) 2 A0 and t = 1, . . ., T that represent that arc (i, j) is operational
in time period t. The scheduling variables include binary variables
akijt for k = 1, . . ., K, (i, j) 2 A0, and t = 1, . . ., T that represent the deci-
sion that work group k completes arc (i, j) in time period t. The for-
mulation of the INDS problem is:
max
XT

t¼1

X

i2D

ltwiv it

subject to (IP)
X

ði;jÞ2A[A0
xijt �

X

ðj;iÞ2A[A0
xjit 6 si for i 2 S; t ¼ 1; . . . ; T ð1Þ

X

ði;jÞ2A[A0
xijt �

X

ðj;iÞ2A[A0
xjit ¼ 0 for i 2 N n fS [ Dg; t ¼ 1; . . . ; T ð2Þ

X

ði;jÞ2A[A0
xijt �

X

ðj;iÞ2A[A0
xjit ¼ �v it for i 2 D; t ¼ 1; . . . ; T ð3Þ

0 6 v it 6 di for i 2 D; t ¼ 1; . . . ; T ð4Þ

0 6 xijt 6 uij for ði; jÞ 2 A; t ¼ 1; . . . ; T ð5Þ

0 6 xijt 6 uijbijt for ði; jÞ 2 A0; t ¼ 1; . . . ; T ð6Þ

X

ði;jÞ2A0

XminfT;tþpij�1g

s¼t

akijs 6 1 for k ¼ 1; . . . ;K; t ¼ 1; . . . ; T ð7Þ

bijt �
Xt

s¼1

XK

k¼1

akijs 6 0 for ði; jÞ 2 A0; t ¼ 1; . . . ; T ð8Þ

Xpij�1

t¼1

bijt ¼ 0 for ði; jÞ 2 A0 ð9Þ

XK

k¼1

Xpij�1

t¼1

akijt ¼ 0 for ði; jÞ 2 A0 ð10Þ

akijt;bijt 2 f0;1g for ði; jÞ 2 A0; k ¼ 1; . . . ;K; t ¼ 1; . . . ; T: ð11Þ

The objective is to maximize the cumulative weighted flow
arriving at the demand nodes over the horizon of the problem.
Constraints (1)–(6) are typical network flow constraints over the
arcs available in the network in period t. They ensure that the flow
generated at a supply node does not exceed its supply capacity (1),
the amount of flow delivered to a demand node is equal to the sat-
isfied demand at the node (3) while not exceeding the requested
demand at the node (4), and the flow on an available arc does
not exceed its capacity (5) and (6). Constraints (7)–(11) link the
network design decisions with the scheduling decisions. We note
that we have assumed that the performance of the network is eval-
uated at the end of the time period, so if akijt = 1, then arc (i, j) is
available in the network in time period t. Constraints (7) ensure
that, at most, one task is being processed on work group k in time
period t. This is because, if akijs = 1, then the task corresponding to
arc (i, j) will be processed during time periods s � pij + 1 through s
on work group k. Constraints (8) ensure that if arc (i, j) is opera-
tional in the network in time period t, then it must have been com-
pleted by some work group by that time period. Constraints (9) and
(10) are logical constraints that ensure that we do not complete an
arc in a time period earlier than its required processing time.

The INDS problem is most applicable to single-commodity infra-
structure systems which include, for example, power, water, waste
water, and supply chain systems. The power system is typically
the backbone of civil infrastructure systems and is vulnerable to dis-
ruptions from many extreme events. However, the INDS problem as-
sumes that we can directly control the flow in the network which is
not the case for power systems (see Bienstock and Mattia, 2007). The
‘DC model’ is a commonly used linear approximation of the power
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infrastructure (see the Appendix for its details) to model its opera-
tions. We will examine the INDS problem with the DC model in
our computational testing. The INDS problem can be directly applied
to water, waste water, and supply chain systems since the flow in
these systems can be directly controlled. We note that the types of
components in these systems that are vulnerable to damage will
vary based upon the type of extreme event (e.g., the pipes of the
waste water system are vulnerable to earthquakes while its pump
stations are more vulnerable to flooding).

It is possible to perform pre-processing on this integer program-
ming formulation in order to reduce the capacities of the arcs in
the network. This is important since, for arcs in A0, a reduction in
the capacity will require a larger bijt value in the relaxation in order
to achieve a particular flow. This in turn requires more scheduling
resources to be dedicated to processing this arc. The capacity
reduction techniques seek to tighten the capacity of an arc, uij,
where (i, j) 2 A0. It is clear that we could determine the maximum
flow placed on arc (i, j) in any potentially feasible flow in the net-
work (N,A [ A0) and reduce uij to this value. However, if arc (i, j) be-
longs to a directed cycle, this value could be arbitrarily high since
flow may move through this cycle without ever arriving at a de-
mand node. We can thus restrict ourselves to feasible flows where
every unit of flow reaches some demand node (i.e., the flow can be
decomposed into a series of paths). Therefore, we can reduce uij to
be equal to the minimum cut value that separates j from the set of
demand nodes D, since every unit of flow on arc (i, j) must cross
this cut to reach a demand node. We can further reduce the capac-
ity of arc (i, j) 2 A0 when all demand node weights are equal. We
will assume that, without loss of generality, the network has a sin-
gle supply and demand node. This further reduction focuses on the
additional flow sent through the network by installing some subset
of arcs in A0. It relies on the following result.

Lemma 2.1. There exists a maximum flow in the network
G ¼ ðN;A [ AÞ, where A # A0 such that the flow on arc ði; jÞ 2 A is less
than or equal to �v � v for all ði; jÞ 2 A, where �v is the maximum flow in
the network G and v is the maximum flow in the network G.

Proof 1. We will construct a solution that satisfies this property be
applying the augmenting path algorithm (see Ahuja et al., 1993)
starting from the maximum flow in G in order to determine the
maximum flow in G. The proof will be by induction on iteration ‘

of the augmenting path algorithm. We let x‘ij denote the flow on
arc (i, j) and �v ‘ represent the flow into the demand node after iter-
ation ‘ of the algorithm. It is clear that for ‘ = 0, that xij 6 �v ‘ � v for
all ði; jÞ 2 A. We assume the claim holds up to iteration ‘ and show
it holds for ‘ + 1. Let P be the augmenting path found in iteration
‘ + 1. By definition, the algorithm pushes �v ‘þ1 � �v‘ flow along this
path. The only way for the flow on arc (i, j) 2 A0 to increase is for
it to be part of this path. For this type of arc, we know that
x‘þ1

ij ¼ x‘ij þ ð�v ‘þ1 � �v‘Þ 6 �v‘ � v þ �v ‘þ1 � �v ‘ ¼ �v ‘þ1 � �v . Our desired
result holds by induction. h

Lemma 2.1 holds for any set A # A0. We can, therefore, reduce
the capacity of arc (i, j) 2 A0 to v0 � v where v0 is the maximum flow
in (N,A [ A0). Note that there is overhead in these pre-processing
steps to reduce the capacity of the arcs and, therefore, we will only
apply them to problems where the initial integer programming
formulation cannot be solved quickly.
3. Solution methods: Dispatching rules and valid inequalities

This section is focused on the development and analysis of solu-
tion methods for the integrated network design and scheduling
problem. We first develop a novel heuristic dispatching rule for
the problem that selects the next set of arcs to be processed by
the work groups. This dispatching rule will integrate fundamental
concepts from the fields of network flows and scheduling. We then
discuss families of valid inequalities for the integer programming
formulation of the INDS problem.

3.1. Dispatching rules

There has been a significant amount of research in parallel ma-
chine scheduling on so-called dispatching rules (Pinedo, 2008).
These rules often characterize the desirability of scheduling a cer-
tain task by estimating its contribution to the objective function
and then greedily schedule the unscheduled task with the ‘best’
desirability. The key in developing a heuristic dispatching rule for
our INDS problem is to understand how completing a task or,
equivalently, an arc impacts the objective function of the problem.
The installation of an arc (i, j) can improve the performance of the
network by increasing the amount of weighted flow in it. This will
then impact the objective function for the remainder of the horizon
of the problem. We could attempt to develop a more traditional
dispatching rule for our INDS problem by examining, for each unin-
stalled arc (i, j) 2 A0, the improvement in the performance of the
network by installing arc (i, j) into it. A modification of the classic
weighted shortest processing time (WSPT) first rule (see Smith,
1956) would then select and schedule the arc that maximizes the
ratio of the improvement by installing the arc and the processing
time of the arc. However, this is short-sighted in the sense that cer-
tain arcs will not increase the weighted flow if they are not per-
formed in sequence with other arcs. For example, there may
exist a path of arcs from a supply node to a demand node that
needs to be installed in order to increase the weighted flow. The
installation of each of these arcs may not increase the weighted
flow but the installation of this path may significantly increase
the weighted flow. Therefore, our dispatching rule should be con-
cerned with the contributions to the weighted flow of installing a
set of arcs.

It is easiest to motivate the dispatching rule for the INDS prob-
lem by focusing on a special class of the problem where each de-
mand node is given the same weight. In other words, the
performance of the network is simply concerned with maximizing
the total flow from the supply nodes to the demand nodes. We can
assume that the performance of the network is evaluated by deter-
mining the maximum flow from a single supply node s to a single
demand node s. This assumption is without loss of generality by
applying a standard network expansion technique to multiple sup-
ply/demand node networks. It is well-known that the residual net-
work associated with a maximum flow in the network does not
contain an augmenting path from the supply node s to the demand
node s (see Ahuja et al., 1993). Therefore, in order to increase the
amount of flow sent from s to s in the current operational network,
we must install a set of arcs that form some residual path between
the source and the sink node. Our dispatching rule for this INDS
problem will then select a set of uninstalled arcs that belong to
some residual path and that maximizes the ratio of the residual
capacity of the path and the cumulative processing times of the
uninstalled arcs in it. Mathematically, suppose that x⁄ is the cur-
rent optimal flow in the network composed of the original arcs
and the installed arcs from A0. The arcs in the residual network
associated with x⁄ will have a residual capacity of rij and a process-
ing time of pij = 0 since they are already installed. The uninstalled
arcs in A0 will have a residual capacity of uij (their original capacity)
and a processing time of pij (their original processing time). We
then define the residual capacity of path P as r(P) = min(i, j)2Prij

and the processing time of a path as pðPÞ ¼
P
ði;jÞ2Ppij. We are then

interested in scheduling the uninstalled arcs in the path that is an
optimal solution to the problem
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max
P2U:pðPÞ>0

rðPÞ
pðPÞ ð12Þ

where U is the set of all paths from s to s in the network composed
of the residual network and all uninstalled arcs. We further note
that that if p(P) = 0, this implies that all arcs are already installed
in the network and that r(P) = 0 since x⁄ is the maximum flow in
the network. The numerator of (12) provides a measure of the
amount of additional flow in the network by installing arcs in P
while the denominator provides a measure of the resources re-
quired to process P. For a single work group, p(P) is precisely the
‘makespan’ required to complete all uninstalled arcs in the path.
For multiple work groups, we could alter the denominator to
approximate the makespan of the path by including the leading
term 1

K. This provides a lower bound on the actual makespan for
the path. In terms of the optimization problem, this leading term
is a constant for all paths, so optimizing (12) is equivalent. Although
this is only a lower bound on the makespan of a path for multiple
work groups, the dispatching rule is shown to provide solutions of
high-quality.

It is more difficult to determine an optimal path to (12) than it is
to determine the next job according to the WSPT rule since we can-
not decompose (12) by arcs. We will now discuss a combinatorial
algorithm to determine an optimal solution to (12). The idea for the
algorithm is motivated by the following observation: if we know
that r(P⁄) is the numerator in an optimal solution to (12), then P⁄

is the path with the shortest processing time in the network where
we only include arcs whose residual capacities are greater than or
equal to r(P⁄). This immediately leads to an algorithm to solve (12):
for each potential value of the numerator (i.e., the residual capacity
of a path), we determine the shortest processing time path in the
network containing only arcs whose residual capacities are above
the numerator. An optimal solution is then the path obtained in
this procedure that has the maximum ratio of residual capacity
to processing time. We note that this procedure is easily adapted
to situations where a constraint is placed on the denominator
(for example, if we are in a single work group setting and at time
t, we do not want to select a path with a processing time greater
than T � t) by terminating the procedure when the shortest path
in the network exceeds the threshold of the constraint. Note that
the residual capacity of a path is the minimum residual capacity
of the arcs in the path, so there are at most 2(jAj + jA0j) distinct val-
ues to be considered. This means that we can determine the next
set of arcs to be processed by solving O(jAj + jA0j) shortest path
problems.

The dispatching rule for this INDS problem will determine the
first set of tasks to be processed by solving the problem (12). We
will assign these tasks (according to the longest processing time
first rule) to the available work groups until all tasks from this
set are processed. In other words, we can view the tasks that need
to be processed as a queue and we will process the next task in the
queue whenever a work group becomes available. If no tasks are in
the queue, we will then determine the next set of arcs to be pro-
cessed by considering the residual network associated with an
optimal solution to the maximum flow problem where all arcs that
are currently being processed are assumed to be available in the
network. This process will continue until either all tasks are pro-
cessed or we reach the end of the horizon.

We now discuss the dispatching rule for the INDS problem
where the demand nodes can have different weights. In particular,
we will select a residual path from some source node j 2 S to some
demand node i 2 D that maximizes the ratio of wi times the resid-
ual capacity of the path and the cumulative processing times of the
uninstalled arcs in it. We can determine this set of uninstalled arcs
by solving O(jDj) problems of the form (12)-one for each distinct
node i 2 D, viewing that node as the ‘super-demand’ node s.
However, in the method for solving (12), note that for a fixed resid-
ual capacity, we are solving a shortest path problem on the same
set of arcs regardless of the node i 2 D. Therefore, because of the
structure of Dijkstra’s algorithm, we can determine the relevant
information (i.e., shortest path from the super-source node to each
i 2 D) for each of the O(jDj) problems of the form (12) by solving
O(jAj + jA0j) shortest path problems. We will now formally present
the algorithm to determine the next set of arcs to be processed
according to the dispatching rule for the core INDS problem. This
algorithm assumes that we are working with the network where
we have created a ‘super-supply’ node s and have calculated the
residual network, G(x⁄), associated with the current optimal
weighted flow, x⁄, in this network. We denote rij as the residual
capacity of arc (i, j) where if arc (i, j) is uninstalled in the network
rij = uij. The notation G(N,A(r)) is used to denote the network com-
posed of only arcs with a residual capacity such that rij P r where
(i, j) 2 A [ A0 or (j, i) 2 A [ A0. Algorithm 1 provides the pseudo-code
for determining the path selected by the dispatching rule.

Algorithm 1. Algorithm for Path Selection in the Dispatching Rule
1: Set MaxRatio = 0 and P⁄ = null.
2: Sort the residual capacities of all residual arcs (i.e., arcs in

the set {(i, j), (j, i): (i, j) 2 A [ A0}) in non-decreasing order
and put them into array R.

3: for ‘ = 1, . . ., 2(jAj + jA0j) do
4: Determine the shortest path distance labels, d(i,R[‘]) for

i 2 D, from the source node s in the network G(N,A(R[‘])).
5: for all i 2 D do

6: if wiR½‘�
dði;R½‘�Þ > MaxRatio then

7: Set MaxRatio ¼ wiR½‘�
dði;R½‘�Þ.

8: Set P⁄ to be the shortest path from s to i.
9: end if
10: end for
11: end for
12: Return P⁄.
3.2. Valid inequalities for IP formulation

The purpose of this section is to present valid inequalities in or-
der to strengthen the bounds provided by the linear programming
relaxation of the IP formulation. We focus on three families of valid
inequalities: (i) shortest processing time path inequalities, (ii) flow
cover inequalities, and (iii) b-conservation inequalities. The main
idea behind the latter two families is to increase the bijt variables
in order to achieve the desired level of flow on arc (i, j) in time per-
iod t. For example, the capacity reduction techniques from Section
2.1 focus on reducing the capacity of an arc to �uij < uij in order to
drive up bijt. This implies that bijt P xijt=�uij > xijt=uij and thus bijt will
need to be at a higher level to achieve the flow of xijt. This, in turn,
requires more scheduling resources to be dedicated to arc (i, j) prior
to time period t. The valid inequalities in this section are similar in
nature and, therefore, help to ‘link’ the flow variables with the
scheduling decisions.

The shortest processing time path constraints are a generaliza-
tion of constraints (9) where we also consider the time required to
build a path of arcs to node i. In particular, we know that the flow
on arc (i, j) 2 A0 cannot be positive until we install some path from a
supply node to node i and arc (i, j) into the network. We are, there-
fore, concerned with the shortest processing time path from any
supply node to node i plus the process time of arc (i, j). We then
know that arc (i, j) 2 A0 cannot have flow on it until this value
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divided by the number of work groups (i.e., the lower bound on the
makespan to complete this path and arc (i, j)). This helps rule out
‘partial’ installations of a path to arc (i, j) before this time in the lin-
ear programming relaxation. Formally, let Pij be equal to the short-
est processing time path value (where an arc in A has a processing
time of 0) from some supply node to node i plus the processing
time of arc (i, j), pij. The shortest processing time path constraints
are then defined as:

XðbPij=KcÞ�1

t¼1

bijt ¼ 0 for ði; jÞ 2 A0: ð13Þ

The flow cover inequalities of Gu et al. (1999) can be applied to
the network during each time period t for each arc (i, j) 2 A [ A0 and
each cutset C(i) separating all supply nodes from i, provided that
the cutset contains only arcs in A0, i.e., C(i) # A0. This would be
especially applicable, for example, in disruptions to infrastructures
that wipe out entire portions of the network. These inequalities
link the flow on arc (i, j) in time period t with the availability of arcs
in the cutset, since any flow on arc (i, j) must be on some arc in C(i).
We can define these inequalities as

xijt 6 uij

X

ðj;iÞ2CðiÞ
bjit for t ¼ 1; . . . ; T: ð14Þ

Let O(i) be the set of nodes such that there exists an arc (j, i) 2 A0. If
the set of arcs {(j, i): j 2 O(i)} is a valid choice for C(i) then the cor-
responding inequality focuses on those arcs that are ‘one step back’
from node i in the network, i.e., they come directly into node i. We
can apply the same type of inequalities to arcs that are ‘two steps
back’ from node i in the network, i.e., those arcs that come into
some node j 2 O(i), as long as all arcs two steps back are in A0. This
family of inequalities can be extended to an arbitrary number of
steps back from node i as long as all arcs that far back are in A0.

The b-conservation inequalities are motivated by the fact that if
arc (i, j) is operational (e.g., has flow on it), then some arc into node
i must also be operational. They are similar to the one step back
flow-cover inequalities since they can only be applied to an arc
where all arcs coming into node i belong to the set A0. These
inequalities are

bijt 6
X

j2OðiÞ
bjit for t ¼ 1; . . . ; T: ð15Þ

These constraints help link the scheduling decisions of a path of arcs
by forcing those that are earlier in the path to be operational when
the arcs later in the path are operational. We now prove a relation-
ship between these inequalities and the flow-cover inequalities.

Theorem 3.1. The flow cover inequalities for one-step and two-step
back cutsets are implied by the b-conservation inequalities, if the
network has no parallel arcs (where two arcs are considered parallel if
they both leave node i and enter node j).
Proof 2. Note that

xijt 6 uijbijt 6 uij

X

j2OðiÞ
bjit;

which shows that the b-conservation inequalities imply the one-
step back flow cover inequalities. For the two-step back flow cover
inequalities, we apply the b-conservation inequalities to each node
j 2 O(i) to yield

uij

X

j2OðiÞ
bjit 6 uij

X

j2OðiÞ

X

q2OðjÞ
bqjt;

where no b term is repeated because there are no parallel arcs. Note
that if there was some arc into j 2 O(i) that is in A, the two-step
back inequalities would not be valid for arc (i, j) as well as the b-
conservation constraint for j. h
4. Computational testing on the New Hanover County data set

We will now discuss the results of case studies of applying the
INDS problem to realistic data sets representing infrastructure sys-
tems in New Hanover County, North Carolina in the United States.
New Hanover County is a coastal county in southern North Caro-
lina that includes the city of Wilmington and the Cape Fear bea-
ches. These data sets were created through extensive
collaborations with the managers of the infrastructure systems in
New Hanover County as well as collaborations with the emergency
manager of the County. This section focuses on applying the INDS
problem to three separate infrastructure systems: (i) the power
infrastructure of the County, (ii) the waste water infrastructure
of the county, and (iii) an emergency supply chain infrastructure
in the city of Wilmington. The disruptions to the power and waste
water infrastructures model the effects of a strong hurricane
whose eye passes to the south of the county so that both extensive
flooding and wind damage are possible, which is similar to the sce-
nario caused by Hurricane Ophelia in Septemeber 2005. The emer-
gency supply chain infrastructure models situations in which the
emergency manager of the county must deliver critical goods to
the affected population in Wilmington that were unable to leave
the city prior to the hurricane.

In the analysis of these case studies, we are interested in exam-
ining the performance of the heuristic dispatching rule and the
integer programming formulation of the INDS problem. It is espe-
cially important to determine the potential for these methods to be
used in real-time restoration activities. Therefore, our testing was
performed on a laptop with a 2.16 GHz Intel Core 2 Duo Processor
with 3 GB of RAM, which would be similar to the computing re-
sources available during real-time restoration activities. We have
used CPLEX 12.0 in order to solve the integer programming formu-
lation of the INDS problem. We have chosen to only examine the
core integer programming formulation of the INDS problem since
it is solved rather quickly (so the capacity reduction techniques
and the shortest processing time path constraints were not neces-
sary) and the disruptions do not wipe out large portions of the net-
work (so the flow cover and b-conservation inequalities are not
applicable).

The weights associated with the demand nodes in the network
can be utilized so that the restoration plan is aligned with certain
goals. The most straightforward goal would be to focus on evaluat-
ing the performance of the network by measuring the amount of
demand met in it. This would be modeled by setting all weights
to be equal across demand nodes and can be applied when an
infrastructure is interested in maximizing its revenues (since each
unit of met demand provides the same revenue). An alternative
goal would be to focus on aligning the restoration plan with the
goals of the overall response efforts to the extreme event. This is
especially important for New Hanover County since the emergency
manager of the county has certain priorities in the overall restora-
tion efforts of the county that may differ from simply meeting de-
mand in the infrastructure system. The emergency manager of the
county would view the demand at certain ‘high-priority’ nodes as
being more important (especially those nodes that feed critical
facilities in other infrastructures) than demand at ‘low-priority’
nodes. Therefore, they will measure the performance of the
network as the maximum amount of weighted demand met (or,
equivalently, the weighted maximum flow), where each node is
assigned a weight based on its priority level. For New Hanover
County, the priorities of the emergency manager of the county,
in decreasing order of their importance, are: (1) emergency



Table 1
The performance of the dispatching rule and IP formulation on the power
infrastructure case study.

K lt wi Dispatching rule IP

Time (s) Opt. gap (%) Time (s) Opt. gap (%)

1 Constant Constant 1.77 0.00 4.54 0.00
1 Constant Priority 2.24 0.00 5.22 0.00
1 Scaled Constant 1.92 0.00 4.56 0.00
1 Scaled Priority 2.80 0.00 6.14 0.00
2 Constant Constant 2.47 0.12 5.89 0.00
2 Constant Priority 3.44 0.12 6.02 0.00
2 Scaled Constant 2.98 0.14 6.39 0.00
2 Scaled Priority 3.35 0.12 6.24 0.00
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communications centers, (2) hospitals and emergency shelters, (3)
police and fire departments, (4) all components in the water and
wastewater infrastructures, and (5) all other components (includ-
ing residential households).

This research will explore the impact to the restoration plan
when it is aligned with the goals of the county. This will involve
determining the restoration plan by solving an INDS problem
where the weights of the nodes in the network reflect the priorities
of the county and then evaluating its performance under the objec-
tive function where all demand weights are equal. The deviation of
this restoration plan from the optimal objective function value to
this ‘equal demand weight’ INDS problem measures the impact
on the restoration plan of aligning it with the priorities of the
county.
4.1. Power infrastructure case study

The focus of this section is on examining a case study represent-
ing the power infrastructure of New Hanover County. The network
model of this infrastructure has 377 nodes and 386 arcs under nor-
mal operations. It may seem that there is not much redundancy in
the system but we note that there is a good level of redundancy in
the transmission network in the county. The managers of the power
infrastructure suggested that the model should focus on the trans-
mission network of the county-so that the distribution networks to
the demand points are rather simple. In particular, we model
the distribution networks as point-to-point connections with the
transmission substations. There are 37 nodes and 46 arcs in the
transmission network. We have added 340 demand nodes and
340 arcs connecting these nodes to appropriate distribution sub-
stations in our model of this infrastructure. These demand nodes
and arcs then model the distribution network in the county. The
INDS problem has jNj = 377 nodes, jAj = 346 arcs, and jA0j = 40 arcs
as network design decisions. The horizon of the problem is equal to
T = 30 where, roughly, each time period represents a six hour block
of time so that the horizon is roughly a week. We consider two dif-
ferent types of weights on the performance of the network (i.e., lt

for t = 1, . . ., T) where the first class (‘Constant’) weighs the perfor-
mance evenly over the horizon and the second class (‘Scaled’)
weighs the performance more heavily later in the horizon by set-
ting lt = t/T. We further consider two different types of weight
for the demand nodes: one where each unit of met demand is
Fig. 1. The improvement in the performance over time of the power infrastructure in N
Priority demand node weights. Black arcs represent the disrupted services and the bold b
time. Once a work group completes the processing of an arc, the arc becomes operation
weighed evenly across the demand nodes (‘Constant’) and one
where the demand nodes with higher priorities according to the
emergency manager of the county have larger weights (‘Priority’).
The number of work groups in this study is equal to K = 1 or
K = 2 which represents the fact that the county itself has very lim-
ited resources.

Table 1 provides the computational performance of the heuris-
tic dispatching rule and the integer programming formulation of
the INDS problem. Note that the gap of the solution methods
was ‘normalized’ by setting the performance of the network in
each time period equal to its maximum weighted flow minus the
maximum weighted flow in the network without any arcs from
A0. Therefore, the initial performance of the network does not bias
the gap of the solution methods. These results indicated that the
dispatching rule obtains high-quality (and optimal in some in-
stances) solutions to the INDS problem extremely quickly. CPLEX
12.0 is able to identify an optimal solution to the problem quickly
as well, although commercial software packages may not be avail-
able to managers of the infrastructure systems during real-time
restoration activities.

The restoration efforts formulated by the dispatching rule and
the INDS problem can assist in the decision-making of the manag-
ers of the power infrastructure. However, these managers may
have limited mathematical expertise implying that it would be
beneficial to reproduce the restoration efforts using visualization
tools. Fig. 1 provides an example of such a visualization tool for
the optimal restoration efforts for the problem with K = 2, Constant
lt, and Priority demand node weights. This visualization tool was
ew Hanover County for the optimal restoration efforts with K = 2, Constant lt, and
lack arcs are those currently being processed by a work group at a particular point in
al and some disrupted services are restored.



Table 2
The performance of the restoration efforts obtained through the dispatching rule and the core INDS problem under the DC model.

K lt wi Dispatching rule INDS problem INDS Problem with DC model

Time (s) Opt. gap (%) Time (s) Opt. gap (%) Time (s) Opt. gap (%)

1 Constant Constant 1.77 2.21 4.54 2.21 33.13 0.00
1 Constant Priority 2.24 2.00 5.22 2.00 26.72 0.00
1 Scaled Constant 1.92 0.80 4.56 0.80 95.01 0.00
1 Scaled Priority 2.80 0.75 6.14 0.75 323.14 0.00
2 Constant Constant 2.47 1.09 5.89 0.13 130.70 0.00
2 Constant Priority 3.44 0.99 6.02 0.18 154.73 0.00
2 Scaled Constant 2.98 0.24 6.39 0.00 186.88 0.00
2 Scaled Priority 3.35 0.26 6.24 0.06 66.01 0.00

Table 3
Performance (measured through optimality gaps) of current restoration procedures of
the power infrastructure in New Hanover County.

K lt wi Power company restoration
efforts (%)

1 Constant Constant 12.06
1 Constant Priority 10.03
1 Scaled Constant 65.41
1 Scaled Priority 50.73
2 Constant Constant 14.05
2 Constant Priority 12.67
2 Scaled Constant 79.01
2 Scaled Priority 65.82
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produced using a geographic information system (GIS) to display
data on the infrastructure.

The ‘Constant’ weights for the demand nodes model the objec-
tive of meeting demand within the power infrastructure. There-
fore, the operations of the infrastructure under this performance
metric would be to deliver the maximum amount of power possi-
ble throughout the system. It is clear that the ‘Priority’ weights for
the demand nodes reflect the performance metric that aligns the
restoration efforts of the power infrastructure with the overall
goals of the response efforts of the emergency manager of the
county. We have observed that, for all combinations of work
groups (K) and performance weights (lt), the optimal restoration
plan aligned with the priorities of the emergency manager meets
the same level of demand over the horizon of the problem as the
optimal solution to the ‘demand-based’ objective function. This
implies that the optimal ‘priority-based’ restoration plan is also
an optimal solution to the INDS problem with the ‘demand-based’
objective function. Therefore, the restoration plan of the power
infrastructure can be aligned with the overall goals of the response
effort without any effect on the amount of demand met over the
horizon of the restoration efforts. We do note that this observation
is a function of the network structure and disruption scenarios;
however, it is still interesting that the ‘priority-based’ and ‘de-
mand-based’ objective functions do not conflict for these case
studies.

4.1.1. Incorporating the DC model into the INDS problem
As discussed in Section 2.1, there is a potential issue in applying

the restoration efforts obtained either through the dispatching rule
or integer programming formulations of the INDS problem: it was
obtained with a primarily ‘flow-based’ model of the operations of
the power infrastructure. As discussed in the Appendix, it is only
possible to indirectly control power flows since they behave
according to certain physical laws. Therefore, we will explore the
quality of restoration efforts (i.e., which arcs to process and when
to process them) obtained through these methods when the oper-
ations of the power infrastructure are modeled according to the DC
model discussed in the Appendix. The performance of the network
in each time period for the ‘scheduling’ solution returned by the
dispatching rule is calculated through the DC model over the avail-
able arcs in the network. We, therefore, associate a value v(DR)
with the dispatching rule, which represents the cumulative perfor-
mance of the DC model applied to the available network over the
horizon of the problem. The gap of the dispatching rule is then
calculated as

100% � v�ðDCÞ � vðDRÞ
vðDRÞ ;

where v⁄(DC) is the optimal objective function value to the INDS
problem with the DC model. The gap associated with the optimal
scheduling solution to the core INDS problem was calculated in a
similar fashion. In other words, the gaps presented in Table 2 can
be viewed as the quality of the heuristic that determines a solution
to the ‘INDS problem with DC model’ by (i) first determining the
restoration decisions using the ‘flow-based’ (or core) INDS problem
and (ii) determining the operations of the network using the DC
model in each time period over the operational network. Table 2
presents the performance of the restoration efforts returned by
the dispatching rule and the optimal restoration efforts in the core
INDS problem when compared with the optimal restoration efforts
in the INDS problem with the DC network model. The performance
of the restoration efforts obtained using the core INDS problem and
the dispatching rule perform extremely well under the DC model of
the problem. We further note that, for all combinations of work
groups and performance weights the optimal solution to the INDS
problem with the DC model and weighted demand nodes is also
an optimal solution to the same problem with constant demand
node weights.

4.1.2. Examining the INDS problem in the context of the power
infrastructure’s current restoration procedures

This section will focus on the use of the INDS problem as an
alternative method to formulating the restoration efforts of the
power infrastructure from their current procedure. The power
company will tend to focus on the unmet demand in the network
when it evaluates its performance since this is a more direct reflec-
tion of the disruptions caused by the damage and customers will
report outages as opposed to services. Therefore, the objective
function will be to minimize the cumulative (weighted) unmet de-
mand over the horizon of the efforts, which is slightly different
than the current objective of the INDS problem. This is not an issue
because the two objective functions are equivalent (i.e., the same
set of decisions optimizes both objective functions): the difference
between the weighted flow in the fully restored network and the
weighted flow in a partially restored network is exactly the
weighted unmet demand in the partially restored network. There-
fore, the decisions that maximize the weighted flow over the hori-
zon will also minimize the weighted unmet demand. The
distinction between these two objective functions is important in
presenting the INDS problem as an alternative method since the
managers of the power infrastructure will tend to think in terms
of unmet demand. Therefore, in evaluating the current restoration



Table 4
The performance of the dispatching rule and IP formulation on the waste water
infrastructure case study.

K lt wi Dispatching rule IP

Time
(s)

Optimality
gap (%)

Time
(s)

Optimality
gap (%)

1 Constant Constant 1.43 1.80 4.46 0.00
1 Constant Priority 1.89 2.05 4.65 0.00
1 Scaled Constant 1.50 1.33 4.56 0.00
1 Scaled Priority 2.42 1.46 5.08 0.00
2 Constant Constant 2.00 0.94 5.24 0.00
2 Constant Priority 2.98 1.10 5.64 0.00
2 Scaled Constant 2.52 0.42 5.07 0.00
2 Scaled Priority 3.18 0.47 5.63 0.00
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procedures of the power infrastructure, we will focus on this
weighted unmet demand objective.

The power company in New Hanover County is Progress Energy
and they discuss their restoration procedure in Progress Energy
(Progress Energy, 2010). The company first repairs (or restores)
all damaged components within the transmission network and
then moves onto damaged components within the distribution
networks. The order in which the damaged transmission compo-
nents are repaired is based on how close they are to supply points
in the network. The power infrastructure will repair transmission
components close to the supply points first and progress further
through the network as repairs are completed. Once the transmis-
sion network is repaired, the efforts then focus on the distribution
networks. The power company will first work to restore services to
critical customers (such as hospitals) and then repair damage that
can restore power to large segments of the population. In this anal-
ysis, we have viewed the order of the ‘critical customers’ as the
same order as the priorities of the county after the extreme event.
Therefore, there is no bias in terms of applying this procedure to a
different set of critical customers/priorities than presented in the
weights of the INDS problem.

The focus of our comparison will be on situations when the
power company utilizes temporary components in its restoration
efforts. This situation typically arises in large-scale events when
the emergency manager directs the power company to focus on
restoring services rather than repairing damage (i.e., temporary
components typically have shorter processing times). The proce-
dure to determine the ‘Power Company Restoration Efforts’ will
be to determine which option (i.e., repair the damaged component
or install a temporary component) will be utilized to restore dis-
rupted services caused by the damaged component and then
implement these choices according to the procedure from Progress
Energy (Progress Energy, 2010).

Table 3 provides the performance of these efforts (as measured
through their optimality gaps of weighted unmet demand) when
compared to the optimal solution to the INDS problem. These re-
sults indicate that the utilization of the INDS problem as a method
to formulate the restoration efforts can improve the performance
of these efforts. We do note that the results for the ‘Constant’ lt

weights are, typically, reflective of the focus of the power infra-
structure since unmet demand impacts a customer regardless of
when it occurs over the horizon of the problem. The instances with
the ‘Constant’ lt weights have that there still is room for between
10% and 12% improvements when utilizing the INDS problem to
formulate the restoration efforts.

4.2. Waste water infrastructure case study

The focus of this section is on a case study of the waste water
infrastructure in New Hanover County. The initial network model
of this infrastructure has 543 nodes and 538 arcs. There is no
redundancy in this infrastructure-it is composed of 5 separate
components, which would correspond to trees in the network rep-
resentation. Each of these components has a ‘root’ node that is a
treatment plant and all arcs in a particular component are directed
away from the plant. This may seem counter-intuitive since the
waste water actually flows toward the treatment plant. However,
modeling the infrastructure in this fashion allows us to view the
requested service at a particular node as demand in the network
representation. The disruption scenario in this case study repre-
sents damage to 25 pump stations that could occur simultaneously
with the disruption scenario for the power infrastructure from Sec-
tion 4.1. The pump stations are nodes in the network representa-
tion of the infrastructure, however, since the infrastructure is
composed of 5 trees and all arcs are directed away from the root
node of the tree, each node has one incoming arc into it. Therefore,
we can model the disruption to the pump station as damage to the
incoming arc into it. Therefore, we have that jNj = 543, jAj = 513,
and jA0j = 25 in this case study. We note that, since the damage oc-
curs at a pump station of the infrastructure, it is necessary to fix
that pump station rather than implement some alternative route.
Therefore, the design decisions in A0 correspond exactly to the arcs
representing the damaged pump stations. The horizon of the prob-
lem is set equal to T = 30, where each time period represents a
roughly six hour block of time.

Table 4 provides the computational performance of the heuris-
tic dispatching rule and the integer programming formulation for
the INDS problem. We again consider two types of performance
weights (lt) and demand node weights (wi). These computational
results are very similar to the results for the power infrastructure
case study: the dispatching rule provides high-quality solutions
in seconds and can thus be used in real-time activities. Further,
the application of CPLEX 12.0 to the integer programming formula-
tion of the INDS problem provides an optimal solution to the prob-
lem in real-time. We again investigate the effects on the
restoration plan of the waste water infrastructure by formulating
it considering the priorities of the emergency managers. This
investigation demonstrated that the optimal restoration plan to
the problem with priority-based weights for the demand nodes
meets the same level of demand over the horizon of the problem
as the optimal solution to the ‘demand-based’ objective function
(i.e., the INDS problem with constant demand node weights).
Therefore, this indicates that, for this case study, the restoration
plan of the waste water infrastructure can be aligned with the
overall goals of the response effort without any effect on the
amount of demand met over the horizon of the restoration efforts.
Fig. 2 provides a visualization tool for the restoration efforts of the
problem with K = 2 work groups, Constant lt, and Priority demand
node weights for the waste water infrastructure.
4.3. Emergency supply chain infrastructure case study

The focus of this section is on a case study corresponding to set-
ting up an emergency supply chain infrastructure in New Hanover
County. This emergency supply chain will deliver a critical good
(e.g. food or water) to those affected by the hurricane that did
not have the resources to evacuate the area prior to its landfall.
The supply chain will set up a number of distribution sites in lower
income areas. Therefore, this case study focuses primarily on set-
ting up distribution sites in the city of Wilmington since all other
areas have a median income of over $25,000 dollars. The potential
locations for these distribution sites correspond to well-known,
central entities in the city (such as malls, schools, and parks) and
were determined through input from the emergency manager of
the county. In this case study, these critical goods will flow into
the county through the American Red Cross, be routed to the



Table 5
The performance of the dispatching rule and IP formulation on the emergency supply
chain infrastructure case study.

K lt wi Dispatching rule IP

Time
(s)

Optimality
gap (%)

Time
(s)

Optimality
gap (%)

1 Constant Constant 0.01 2.92 3.51 0.00
1 Scaled Constant 0.01 2.63 3.30 0.00
2 Constant Constant 0.04 4.71 7.36 0.00
2 Scaled Constant 0.04 7.85 4.31 0.00

Fig. 2. The improvement in the performance over time of the waste water infrastructure in New Hanover County for the optimal restoration efforts with K = 2, Constant lt,
and Priority demand node weights. Black nodes (squares) and arcs represent the disrupted services and the bold black nodes (circles) are those currently being processed by a
work group at a particular point in time. Once a work group completes the processing of a node, the node becomes operational and some disrupted services are restored.
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operational distribution sites, and then ‘delivered’ to the affected
population that come to the sites. The network model for the INDS
problem representing this case study will have two nodes (say i
and i0) and an arc ((i, i0) in A0) representing each potential distribu-
tion site. There will be an arc from the Red Cross to each potential
distribution site and then arcs from each potential distribution site
to the different populations to which that site can deliver goods.
The demand for these different populations was created using cen-
sus tract information and the arcs from the potential sites to the
populations were included based on whether the site was close
to the population. This case study has jNj = 59 nodes, jAj = 85 arcs,
and jA0j = 23 design decisions. The problem has a horizon of T = 12,
where each time period corresponds to 6 h. Table 5 presents the
computational performance of the various solution methods on
this case study for problems where all demand is weighted equally.
The heuristic dispatching rule does provide good quality solutions
extremely quickly. CPLEX 12.0 was able to solve the integer pro-
gramming formulation of this problem in real-time as well.
5. Computational testing on the lower Manhattan data set

We will now discuss the results of a case study of applying the
INDS problem to a realistic data set representing the power infra-
structure of lower Manhattan in New York City. We will consider a
case study which represents the effects of the disruption scenario
of the failure of components in and around the Brooklyn-Battery
tunnel. Therefore, this disruption scenario has a large portion of
the network wiped out, meaning the valid inequalities presented
in Section 3.2 are applicable. This data set was created through close
collaborations with officials in this system and was first presented in
the work of Lee et al. (2007). The network in the INDS problem has
jNj = 1810 nodes and jAj = 2621 arcs and is significantly larger than
the networks from the case studies considered in Section 4. Further,
the number of design alternatives is jA0j = 695 arcs. We have consid-
ered problems with K = 1, 2, 3 work groups, where the latter size is
representative of the resources considered in Lee et al. (2007). The
horizon of the INDS problem is T = 60 time periods.

Table 6 presents the computational results for the heuristic dis-
patching rule and core integer programming formulation for the
lower Manhattan data set. The results indicate that CPLEX 12.0 is
not capable of determining (or verifying) the optimal solution to
the problem within a six hour time limit for the core integer pro-
gramming formulation of the problem. We note that we have cho-
sen to provide CPLEX 12.0 with the restoration plan determined by
the dispatching rule as a warm-start solution. The gap of the dis-
patching rule is an overestimate on its actual gap since CPLEX
12.0 did not determine the optimal solution to the instance for
any of the formulations (including ones strengthened with the va-
lid inequalities) tested in this section. The reported optimality gap
overestimate for an instance was calculated by comparing the
objective function of the dispatching rule solution with the best
known upper bound identified across all formulations for the in-
stance tested. It is important to note that CPLEX 12.0 did not iden-
tify a better solution than the one provided by the dispatching rule
for any instance of the problem in the six hour time limit. This
means that the dispatching rule is more appealing to apply to
the INDS problem than CPLEX 12.0 for these large-scale problems.
Note that, due to the high running times of the core INDS problem,
we have not examined the INDS problem with the DC Model for
this case study since it is imperative in that analysis to obtain
the optimal solution to the INDS problem with the DC model.

We now explore the effectiveness of the valid inequalities pre-
sented in Section 3.2 on this case study. We will view the capacity
reduction techniques discussed in Section 2.1 as ‘standard’ since
they do not increase the number of constraints or variables in
the formulation. The capacities of the arcs were reduced based
on the lowest value obtained through each of the capacity reduc-
tion techniques presented in Section 2.1. In other words, the capac-
ity of arc (i, j) was reduced to the lowest of either (i) the largest
amount of flow placed on the arc in any feasible flow, (ii) the min-
imum cut separating node j from the set of demand nodes or (iii)
the difference between the maximum flows in the network
(N,A [ A0) and the network (N,A). Table 7 presents the solution



Table 6
The performance of the dispatching rule and IP formulation on the power infrastructure case study of lower Manhattan.

K lt wi Dispatching Rule IP

Time (s) Opt. gap overestimate (%) Time (s) Opt. gap (%)

1 Constant Constant 8.12 16.47 21,600 25.64
1 Scaled Constant 13.28 10.57 21,600 13.96
2 Constant Constant 7.17 6.61 21,600 8.75
2 Scaled Constant 7.20 2.42 21,600 3.01
3 Constant Constant 6.15 4.58 21,600 5.23
3 Scaled Constant 6.12 1.22 21,600 1.40

Table 7
Strength of the valid inequalities on the linear programming relaxation.

K lt wi IP relaxation Capacity Shortest path + capacity Two step flow
cover + capacity

b-conservation + capacity

Time (s) Time (s) Improvement (%) Time (s) Improvement (%) Time (s) Improvement (%) Time (s) Improvement (%)

1 Constant Constant 32.79 299.00 1.53 131.64 6.93 3180.06 9.49 16984.54 10.72
1 Scaled Constant 42.65 338.95 0.29 134.66 1.56 2854.35 2.91 17154.55 3.40
2 Constant Constant 37.86 106.11 0.00 87.90 0.08 1198.44 2.02 8184.34 2.45
2 Scaled Constant 38.71 111.17 0.00 110.15 0.02 1712.72 0.43 13157.84 0.53
3 Constant Constant 41.87 46.56 0.00 50.07 0.00 797.58 0.18 5370.55 0.32
3 Scaled Constant 46.18 46.98 0.00 47.34 0.00 766.71 0.03 5827.52 0.06

Table 8
Strength of the two step flow cover and b-conservation inequalities in combination with the capacity and shortest processing time path inequalities on the linear programming
relaxation.

K lt wi IP relaxation Two step flow cover + capacity + shortest path b-conservation + capacity + shortest path

Time (s) Time (s) Improvement (%) Time (s) Improvement (%)

1 Constant Constant 32.79 1281.76 11.06 9420.33 12.17
1 Scaled Constant 42.65 1218.40 3.22 6051.16 3.70
2 Constant Constant 37.86 1319.03 2.03 11527.58 2.52
2 Scaled Constant 38.71 1301.85 0.43 8761.33 0.54
3 Constant Constant 41.87 780.64 0.18 4743.86 0.32
3 Scaled Constant 46.18 715.18 0.03 5407.26 0.06

Table 9
Computational results for the two step flow cover and b-conservation in combination with the capacity and shortest processing time path inequalities on the INDS problem.

K lt wi IP Two step flow cover + capacity + shortest path b-conservation + capacity + shortest path

Time (s) Opt. gap (%) Time (s) Opt. gap (%) Time (s) Opt. gap (%)

1 Constant Constant 21,600 25.64 21,600 16.47 21,600 18.19
1 Scaled Constant 21,600 13.96 21,600 10.57 21,600 11.42
2 Constant Constant 21,600 8.75 21,600 6.61 21,600 7.42
2 Scaled Constant 21,600 3.01 21,600 2.42 21,600 2.79
3 Constant Constant 21,600 5.23 21,600 4.58 21,600 4.61
3 Scaled Constant 21,600 1.40 21,600 1.24 21,600 1.22
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time and percentage improvement in the linear programming
relaxation for each of the remaining inequalities plus the capacity
inequalities. It is interesting to note that the valid inequalities are
most effective for problems with K = 1 and their effectiveness
drops off quickly as you increase the number of work groups.
The b-conservation constraints improve the quality of the relaxa-
tion the most, but this formulation requires significantly longer
to solve than the formulation with the two step flow cover inequal-
ities. The shortest processing time path inequalities do not add
much in terms of computation time, so we have explored them
in combination with the flow cover inequalities and b-conservation
inequalities in Table 8.

The inclusion of the shortest processing time path inequalities
does improve the effectiveness of both the formulations based on
the flow cover and b-conservation inequalities but the improve-
ment is not as significant as to when the shortest processing time
path inequalities are added to the original formulation of the prob-
lem. Once again, the results in Table 8 demonstrate the tradeoff be-
tween the quality of the two step flow cover and b-conservation
inequalities and the solution time required to solve the relaxation.
Therefore, we tested both these classes of valid inequalities on the
integer programming formulation for the full six hour time limit.
These results are presented in Table 9. These results indicate that
the formulation based on the two step flow cover inequalities with
the capacity and shortest processing time path inequalities
provides the best bounds on the optimal solution to the integer
program in our six hour time limit. This can be attributed to the
fact that the relaxation of this formulation can be solved more
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effectively than the one based on the b-conservation inequalities
with only a small drop-off in terms of the quality of it.

We note that we have applied CPLEX 12.0 to the IP formulation
with the capacity, shortest path, and b-conservation inequalities
for the problem with K = 3 and constant lt on an eight-core com-
puter. After a week of computational time, CPLEX 12.0 still had
an optimality gap of 4.12% and had not identified a better solution
than the one obtained by the dispatching rule. It is unreasonable to
expect the managers of the infrastructure systems to have access
to this type of computing resource and be willing to wait for over
a week to determine their restoration plan, even in their scenario
planning activities. Therefore, the dispatching rule is an important
tool for the restoration of larger infrastructure systems.
6. Conclusions

This research has developed a novel integrated network design
and scheduling problem that can be used to model the problem of
restoring services provided by infrastructure systems after an ex-
treme event disrupts them. The problem is general enough to be
applicable to a variety of infrastructures, including the power,
water, waste water, and emergency supply chain infrastructures.
We have developed a novel heuristic dispatching rule for the INDS
problem that focuses on selecting a set of arcs to process by exam-
ining the residual path optimality conditions from the area of net-
work optimization. This dispatching rule has been shown to
provide near-optimal solutions to small networks and the (current)
best-known solution to large-scale networks for realistic case stud-
ies in seconds and can thus be used in real-time restoration activ-
ities. We have further developed an integer programming
formulation of the INDS problem that was able to provide the opti-
mal solutions to the smaller case studies quickly. However, the
application of CPLEX 12.0 to this integer programming formulation
for the larger case studies is not able to identify an optimal solution
to the problem even when using significant computational re-
sources. The valid inequalities developed in this research helped
to strengthen the integer programming formulation but were not
able to significantly help it solve the large case study. Further,
CPLEX 12.0 was not even able to improve on the solution returned
by the real-time dispatching rule for this large case study when it is
applied to the integer programming formulation for six hours.

This research has applied the optimization models and algo-
rithms developed for the INDS problem to several realistic case
studies representing infrastructure systems in New Hanover
County in North Carolina and lower Manhattan in New York City.
The network models of the infrastructure systems in these case
studies were created through careful collaborations with the man-
agers of these systems. The disruptions/damage scenarios in the
New Hanover County case studies were created to represent the ef-
fects of a hurricane whose eye passed just to the south of the
county, implying that the strongest winds and flooding associated
with the hurricane will affect the county. For the power infrastruc-
tures and waste water infrastructure, we examined the effects of
the restoration efforts of the infrastructures when they are aligned
with the priorities of the emergency manager of the county. We
observed that, for these case studies, the restoration efforts of
these infrastructures can be aligned with these priorities with no
detrimental effects to the amount of demand met over the horizon
of the restoration efforts. This is because the optimal restoration
efforts formulated according to the priorities of the county was
also optimal to the INDS problem representing the goals of meeting
the maximum amount of demand over the horizon of the efforts.
These case studies demonstrate that the dispatching rule can serve
as a powerful decision support tool in real-time restoration activi-
ties. It will be important, in the future, to integrate the dispatching
rule and integer programming methods for the INDS problem into
decision support systems for managers of infrastructure systems.

An important direction for future research related to the INDS
problem is to determine customized large-scale integer program-
ming methods that can be used to determine the optimal solution
to large case studies. This is important since it can help to better
understand the true performance of our dispatching rule rather
than just bounds on the performance. This is further important
since infrastructures are becoming larger and more complex due
to the increase in demand for their services by society. Therefore,
methods that can provide the optimal solution to large case studies
and help to benchmark the performance of real-time solution
methods to them is a critical area for future research. It may also
be of interest to examine different methods to evaluate the perfor-
mance of the network in order to capture the considerations of dif-
ferent infrastructure. For example, it may be more appropriate to
model the operations of a road network by determining the short-
est paths from a set of critical source nodes to a set of critical des-
tination nodes.
Appendix A

A.1. Incorporating the DC model for power infrastructures

The DC model is a linear approximation of the behavior of a
power system that is typically used in modeling the behavior of
the power infrastructure system, especially the transmission net-
work. For example, Bienstock and Mattia (2007) used the DC model
in modeling problems related to mitigating grid blackout problems.
We note that Bienstock and Mattia (2007) also provide a detailed
discussion on the relationship between the linear DC model and
the nonlinear AC model for a power system. The DC model includes
decision variables at each node of the network that represent the
phase angle of the node. The flow on arc (i, j) is then a function of
the phase angles of nodes i and j along with the reactance of the
arc (i, j). The reactance, bij, of the arc is dependent on the length of
it and the voltage levels. By defining hi for i 2 N as the phase angle
of node i, the flow on arc (i, j) is determined through the equation:

bijxij ¼ ðhi � hjÞ: ð16Þ

We note that both the phase angle variables and the arc flow vari-
ables are unrestricted in the DC model. A negative flow on arc (i, j)
corresponds to power flowing from node j to node i. Therefore, it
is necessary to include constraints that model Eq. (16) into the core
INDS problem. The difficulty, however, is that this constraint should
only be enforced at time t for the arcs in the network that have been
completed prior to time t. In order to incorporate the DC model into
(IP), we will define variables hit for i 2 N and t = 1, . . ., T that repre-
sent the phase angle of node i in time period t. For all arcs (i, j) 2 A,
we replace constraints (5) with the constraints

bijxijt ¼ ðhit � hjtÞ for ði; jÞ 2 A; t ¼ 1; . . . T; ð17Þ
� uij 6 xijt 6 uij for ði; jÞ 2 A; t ¼ 1; . . . ; T: ð18Þ

These constraints enforce the DC flow model for arcs (i, j) 2 A and
ensure that the flow on the arc does not exceed its capacity (thus
preventing failure of these components). For arcs (i, j) 2 A0, we can
model the fact that we only wish to enforce DC flow calculations
(16) when arc (i, j) appears in the network at time t by using ‘Big-
M’ constraints. In particular, for arcs (i, j) 2 A0, we replace constraints
(6) with

bijxijt 6 ðhit � hjtÞ þMð1� bijtÞ for ði; jÞ 2 A0; t ¼ 1; . . . T; ð19Þ

bijxijt P ðhit � hjtÞ �Mð1� bijtÞ for ði; jÞ 2 A0; t ¼ 1; . . . ; T ð20Þ

� uijbijt 6 xijt 6 uijbijt for ði; jÞ 2 A0; t ¼ 1; . . . ; T: ð21Þ
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If bijt = 0, then these constraints force xijt = 0 while not imposing any
restrictions on the relationship between the phase angles of nodes i
and j due to the big M. If bijt = 1, then constraints (19) and (20) guar-
antee that the DC flow Eq. (16) is satisfied for arc (i, j) in time period
t while constraint (21) guarantees that the capacity of the arc is not
violated. We will refer to the core INDS problem where we have re-
placed constraints (5) and (6) with constraints (17)–(21) as the
INDS problem with the DC Model.
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