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Optimizing operations at electric vehicle (EV) battery swap stations is internally motivated by the move-

ment to make transportation cleaner and more efficient. An EV swap station allows EV owners to quickly

exchange their depleted battery for a fully charged battery. We introduce the EV-Swap Station Management

Problem (EV-SSMP), which models battery charging and discharging operations at an EV swap station

facing nonstationary, stochastic demand for battery swaps, nonstationary prices for charging depleted bat-

teries, and nonstationary prices for discharging fully charged batteries. Discharging through vehicle-to-grid is

beneficial for aiding power load balancing. The objective of the EV-SSMP is to determine the optimal policy

for charging and discharging batteries that maximizes expected total profit over a fixed time horizon. The

EV-SSMP is formulated as a finite-horizon, discrete-time Markov decision problem and an optimal policy is

found using dynamic programming. We derive structural properties, to include sufficiency conditions that

ensure the existence of a monotone optimal policy. Utilizing available demand and electricity pricing data, we

design and conduct two computational experiments to obtain policy insights regarding the management of

EV swap stations. We compare the optimal policy to two benchmark policies that are easily implementable

by EV swap station managers. Policy insights include the relationship between the minimum battery level

and the number of EVs in a local service area, the pricing incentive necessary to encourage effective discharge

behavior, and the viability of EV swap stations under many conditions.
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1. Introduction

Optimizing operations at electric vehicle (EV) battery swap stations is internally motivated by the

movement to make transportation cleaner and more efficient. The U.S. Energy Secretary, Ernest

Moniz announced a $50 million budget in January 2014 for research of vehicle technologies, which

will also aid the initiative launched in March 2012 to make plug-in electric vehicles more convenient

and affordable over the next 10 years (U.S. Department of Energy 2014). We approach this research
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initiative by considering the optimal management of EV battery swap stations. An EV battery

swap station allows the EV owner to exchange their depleted battery for a fully charged one. By

implementing swap stations, not only are EV owners offered the convenience to swap their battery,

but there is the opportunity to control battery charging and reduce the negative effect of increased

demand for electricity on the power grid (Clement-Nyns et al. (2010), Bingliang et al. (2012)) and

reduce the difference between high-peak and low-peak energy prices (Eyer and Corey 2010).

The concept of battery swap stations for electric vehicles was initially developed by the Israeli

company Better Place, who financially collapsed in May 2013 (Pearson and Stub 2013). Despite

Better Place’s collapse, it is still of great interest to examine such swap stations as the manufac-

turing of plug-in hybrid electric vehicles (PHEVs) and EVs is on the rise and the motivation to

switch from gasoline to battery power remains undiminished. According to the U.S. Department

of Energy (2014), nearly 100,000 EVs were purchased by Americans in 2013, almost twice as many

as in 2012.

One of the leading electric vehicle manufacturers, Tesla, first gained worldwide attention when

it released the first ever mass produced electric powered sports car in 2010 (Abreu 2010). The

Tesla Model S (sedan) is the current model available for purchase with two battery options and

is marked at $71,070 for the 60 kWh battery option, $81,070 for the 85 kWh battery option, and

$94,570 for the 85 kWh performance model. The Model X (crossover) has recently been unveiled

and is currently available for reservation with delivery expected in Fall 2015 (Tesla motors 2014c).

A third model is said to be released in 2017 at a cost of $35,000 by the Tesla founder and CEO, Elon

Musk (Fowler 2014). It will be called the Model 3 and will be a direct rival of the current BMW

3 Series electric car. The rolling out of electric vehicles to the market is also occurring for many

other vehicle manufacturers. Honda, BMW, Chevrolet, Ford, Nissan, Cadillac, Fiat, Mercedes,

Mitsubishi, SMART, Volkswagon, Kia, and Toyota all carry at least one electric vehicle and can

cost between $23,800 for the Mitsubishi i-MiEV to $137,000 for the 2014 BMW i8 (Plug-In Cars

2014).

In addition to being one of the leading electric car manufacturers, Tesla is also the frontrunner

when it comes to charging stations. There are currently 129 Tesla supercharge stations in North

America, 95 in Europe, and 36 in Asia (Tesla motors 2015). Electric car owners can plug in their

car at a supercharge station and receive 120 kW of charge in just 30 minutes at no cost to the

consumer. This provides 170 miles of travel for the Model S 85 kWh battery option. While this is a

great option for EV owners, it still requires a wait time while the battery is charging and plug-ins

may get congested as the number of EVs purchased continues to increase. Battery swap stations

provide a fast and convenient way to drive away with a fully charged battery. Tesla presented the
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idea of swap stations in June 2013, but they have not yet come to market (Tesla motors 2014a).

However, Tesla is currently testing a pilot swap station program in California (Tesla motors 2014b).

Widely available battery swap stations will help the movement launched in March 2012 by the

U.S. Department of Energy (2014) to make plug-in electric vehicles more convenient and affordable,

as well as help control battery charging to avoid loss of power and power quality that can be

incurred when batteries are charged during high peak demand for electricity (Clement-Nyns et al.

2010). An ancillary benefit of a swap station is the ability to coordinate discharging back to the

power grid through vehicle-to-grid (V2G) technology (Sioshansi and Denholm 2010). When the

charging and discharging of batteries is properly coordinated with the power grid, load balancing

can occur (see Peng et al. (2012), Wang et al. (2011), and Göransson et al. (2010)).

With the significant impact swap stations can have on the growing market for battery powered

vehicles, it is valuable to develop a model that optimizes the operations at a swap station. As such,

we wish to model the system to reflect uncertainty of battery swap demand and nonstationary

charging costs to gain realistic results that are robust to the stochasticity of the system. Thus,

we consider the EV-Swap Station Management Problem (EV-SSMP). To model the EV-SSMP we

develop a Markov decision process model (Puterman 2005). Markov decision processes character-

ize problems with discrete time sequential decision making under uncertainty and can be solved

using dynamic programming. They can be modeled using finite or infinite horizons. Infinite horizon

models provide for the determination of a stationary optimal policy, meaning that the optimal

action is state dependent and not time dependent. Nonstationary Markov decision processes relax

the assumption that problem data does not change with time and are in general unsolvable using

infinite horizon models due to infinite data requirements (Ghate and Smith 2013). We consider a

finite horizon model because our problem data is highly variable with respect to time. The nonsta-

tionary variable properties include mean demand for battery swaps, charging price for batteries,

and revenue from discharging batteries back to the power grid. In a sequential decision making

model, the state of the system is observed at a certain point in time and an action is taken. The

action results in an immediate reward to the decision maker and the system transitions to a new

state according to a probability distribution determined by the chosen action.

The Markov decision process for the EV-SSMP is characterized by the following: (1) decision

epochs are a consistent time unit at which a swap station manager needs to determine the number

of batteries to charge or discharge; (2) the state of the system is the total number of batteries that

are fully charged, where the state of any given battery is either fully charged or depleted; (3) the

action space is defined as one dimensional, where the decision maker chooses the total number

of batteries to charge or discharge; (4) the reward function is comprised of revenue from battery

swaps, revenue from discharging batteries back to the power grid, and cost from charging batteries;
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and (5) transition probabilities are determined by customer demand for battery swaps (which we

assume follows a discrete distribution), the current state, and the chosen action.

The objective in solving our Markov decision problem (MDP) is to determine a policy that

maximizes the expected total reward criterion. A policy consists of decision rules that indicate

to the decision maker an action to take in a given state at a given point in time. For the EV-

SSMP, a decision rule specifies the number of batteries to charge or discharge at a given point

in time given the current inventory of fully charged batteries. We prove that when the demand

for swaps follows a discrete nonincreasing distribution that a monotone nonincreasing policy is

optimal. The optimal policy is found using the backward induction algorithm (Puterman 2005)for

the general case and the monotone backward induction algorithm (Puterman 2005) for the case

when demand is governed by a nonincreasing discrete distribution. We compare the optimal policy

to two benchmark policies that are easy to implement at the swap station. In the first benchmark

policy, denoted the stationary benchmark policy, we assume the swap station maintains a single

target inventory level of fully charged batteries regardless of time of day and day of week. In the

second benchmark policy, denoted the dynamic benchmark policy, we assume the swap station

maintains a distinct target inventory level for each time period (which captures time of day and

day of week information). Each target level is based on the number of batteries at the swap station,

charging costs, and the mean demand. The action for each policy is calculated by taking the

difference between the current state of full batteries and the target level. If the swap station has

more fully charged batteries than the desired level, it will discharge down to the target. If the swap

station has less fully charged batteries than the desired level, it will charge up to the target.

We computationally test the optimal solution methods and two benchmark policies to gain

insight regarding the optimal operations and policies that should be implemented at an EV swap

station. We perform two Latin hypercube designed experiments. The first experiment is conducted

to gain overall information for various parameter inputs for the swap station. Specifically, we

examine the external factors, including the effects of uncertain demand, the incentive that should

be given by the power company for discharging, and the seasonal charging cost variations. The

second experiment is conducted to gain insight concerning the controllable internal parameters at

a swap station (e.g., the number of batteries and swap price) in relationship to the number of EV

swaps and power prices. Further, from the results of the second experiment we conclude that the

dynamic benchmark policy outperforms the stationary benchmark policy; however, both exhibit

the favorable characteristic of ease of implementation.

Growing interest in electric powered vehicles has led to extensive research on the topic in both

industry and academia. Herein, we discuss relevant literature pertaining to the EV swap station
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application and proposed solution approach. To our knowledge, no past research utilizes an inven-

tory control MDP to model the operations of an EV swap station to decide the number of batteries

to charge and discharge when factoring in stochastic demand, nonstationary charging costs, and

nonstationary revenue from discharging back to the power grid.

Other studies have been conducted looking to optimize operations at EV swap stations in dif-

ferent contexts. The most similar to our study is the work of Worley and Klabjan (2011) who

propose a dynamic programming model that seeks to determine the number of batteries to pur-

chase and charge over time while minimizing the total cost comprised of purchase price, charging

cost, opportunity cost of unused batteries, and a penalty for unmet demand. Therefore, the actions

determined by their model are motivated by a different set of costs and do not include the ability

to discharge back to the grid using V2G. In comparison to the exact solution method we propose,

they approximate solutions by fitting the value function with a separable piecewise linear function.

Nurre et al. (2014) do consider the option to both charge and discharge at a swap station, however

they make the assumption that demand for exchanges is known over all time periods. Moreover,

they solve their problem utilizing a mixed integer programming formulation. Using an adequacy

model and Monte Carlo simulation, Zhang et al. (2012) determine the adequate number of batter-

ies to set for swapping over time when batteries can be used for both swapping and discharging.

However, they do not capture the charging actions that would need to take place at a swap station.

Prior research also examines the specific infrastructure of charging and swapping stations in an

area. Pan et al. (2010) consider a two-stage stochastic program that seeks to locate stations in

the first stage and then once a demand scenario is realized at each swap station, the second stage

determines the allocation of batteries for swapping and discharging back to the grid. Their model

does not consider the dynamics and changing actions over time that a swap station manager would

need to make. Using robust optimization, Mak et al. (2013) decide where to locate swap stations

when the information regarding adoption rate of PHEVs is limited. They aid in determining a

deployment strategy for locating swap stations as the success of each swap station is sensitive

due to this limited information. Morrow et al. (2008) analyze the infrastructure requirements for

the charging of PHEVs in residential settings as well as in commercial settings. They report that

the availability of charging infrastructure allows the vehicles to require reduced energy storage

capability and thus reduces the overall cost of purchasing the vehicles. Transportation system costs

can also be reduced by providing rich charging infrastructure rather than using larger batteries

to compensate for lesser infrastructure. Tang et al. (2012) examine optimizing the allocation of

physical infrastructure space at a swap station between batteries and photovoltaic power generation

capabilities.
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A complementary thread of research is the use of EVs or other energy storage devices to solely

balance the fluctuations occurring from the demand for power and other integrated highly variable

renewables such as wind and solar energy. These problems are often solved via a similar method-

ology of dynamic programming. Sioshansi et al. (2014) examine energy storage with the power

grid and estimate the capacity value, a metric used to quantify a resources’s impact on system

reliability. Solving their model using dynamic programming, they show that capacity values are

sensitive to energy prices with variability of up to 40%. Using approximate dynamic programming,

Salas and Powell (2013) consider multiple energy sources (e.g., pumped-hydro, batteries, flywheels)

and determine near optimal time dependent control policies. Using an energy storage problem that

seeks to determine the optimal flow of energy from the power grid to a battery and from the bat-

tery to demand over time, Scott et al. (2014) test a range of approximate dynamic programming

methods.

The MDP employed for solving the EV-SSMP is in the class of inventory control MDPs. Inventory

control MDPs have been utilized to model a wide range of applications including supply chain

management (Giannoccaro and Pontrandolfo 2002), supply chain management with disruptions

(Lewis 2005), airline seat control (Zhang and Cooper 2005), paper manufacturing (Yin et al. 2002),

and assemble-to-order systems (ElHafsi 2009).

Main Contributions. The main contributions of this work are as follows: (1) development

of a Markov decision process model to determine the optimal number of batteries to charge and

discharge at an EV swap station when factoring in stochastic, nonstationary swap demand, non-

stationary charging costs, and nonstationary discharging revenues; (2) proving the existence of

a nonincreasing monotone optimal policy structure when demand is governed by a discrete non-

increasing distribution; (3) implementation of two exact solution methods; (4) generation of two

benchmark policies that are easy to implement by a swap station manager; and (5) analysis of the

results from two designed experiments, which provide policy insights for the effective management

of an EV swap station.

The remainder of this paper is organized as follows. In Section 2 we formally define our problem as

an inventory control MDP to include decision epochs, state space, action sets, reward function, and

transition probability function. We theoretically prove that the EV-SSMP contains a nonincreasing

monotone structure, which motivates the optimal and two benchmark policy solution methods

presented in Section 3. In Section 4, we computationally validate the proposed model and solution

methods by conducting two designed experiments and analyzing the results to arrive at policy

insights. We conclude in Section 5 and provide opportunities for future study.
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2. Problem Statement

We seek to solve the EV-SSMP by determining the optimal number of batteries to charge and

discharge over time. Modeling this problem as a Markov decision problem (MDP), we factor in

stochastic, nonstationary demand, nonstationary charging costs, and nonstationary revenue from

discharging. We consider a finite horizon, single product inventory control model because our

problem data is highly variable with respect to time. The nonstationary characteristics of the EV-

SSMP include demand for battery swaps, charging price for batteries, and revenue from discharging

batteries back to the power grid. Motivating the decision that comprises the optimal policy is the

maximization of profitability at a single swap station.

Within the MDP model, we define our state as the total number of batteries that are fully

charged. We model the state of the batteries at a fundamental level where each battery is either

fully charged or depleted. A solution where charging and discharging occur simultaneously can be

equivalently represented as solely charging or solely discharging when the discharging revenue is

less than or equal to the charging price. Thus, we model our system such that we never charge and

discharge batteries simultaneously. If the discharging revenue is greater than the charging price,

we make the simplifying assumption that the EV station solely charges or solely discharges at any

point in time. We may discharge up to the minimum of the total number of batteries that are fully

charged and the total number of plug-ins available. In this context, what we denote a plug-in is

the physical entity at a swap station that connects a battery to the power grid, thereby allowing

it to draw from the power grid (i.e., charge) or discharge using V2G. The total number of plug-ins

or what we denote as the charging capacity is assumed to remain constant over time. Similarly,

we may charge up to the total number of batteries that are in the depleted state, provided that

our charging capacity is not exceeded. Thus, the total number of batteries at the swap station is

constant over time.

We model the system such that batteries charged at time t become full in time t+ 1. For a time

period of one hour, this charging capability is comparable to that of Tesla superchargers (Tesla

motors 2015). Batteries that are discharged take one time period to deplete but are immediately

unavailable for exchange. Only fully charged batteries are available for exchange or discharging.

Furthermore, batteries that are fully charged are always swapped if available when demand arrives.

The cost to charge and the revenue from discharging batteries is realized during the time period

in which the decision is made. We do not permit backlogging of demand as we assume customers

will not wait at the station if batteries are unavailable. We use the expected reward criterion to

capture revenue from battery swaps, revenue from discharging batteries back to the power grid

through V2G technology, and cost to charge batteries at the swap station. The event timing for

the EV-SSMP is outlined in Figure 1. We mathematically characterize the MDP for the EV-SSMP

using the following notation.
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period t
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in period t, satisfied

if fully charged

batteries available

Charged a+t
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Start of

period t+ 1

Number of

batteries fully

charged st+1

Figure 1 Diagram outlining the timing of events for the EV-SSMP MDP model.

1. The set of decision epochs1, T = {1, . . . ,N − 1}, N <∞, indicates the discrete time periods

in which a decision is made. As previously stated, we consider a finite time horizon due to

nonstationary properties.

2. The state of the system at time t, st ∈ S = {0,1, . . . ,M} indicates the total number of batteries

that are fully charged at decision epoch t, where M is defined as the total number of batteries

at the swap station; thus, M − st is the number of depleted batteries at time t.

3. The action at time t, at ∈Ast = {max(−st,−Φ), . . . ,0, . . . ,min(M − st,Φ)}, ∀st ∈ S indicates

the total number of batteries to charge or discharge at time t, where Φ is the charging capacity

of the system. A negative action indicates the discharging of batteries and a positive action

indicates the charging of batteries. For clarity in our model, we further define our action space.

Let

a+
t =

{
at if at ≥ 0,

0 otherwise,
(1)

and

a−t =

{
|at| if at < 0,

0 otherwise,
(2)

where a+
t is the number of batteries charged and a−t is the number of batteries discharged at

time t. An assumption of the model is that a+
t and a−t cannot both be positive at any time t.

4. The immediate reward when action at is selected in state st at time t that leads to a transition

to state st+1 is the profitability of the system, given by

rt(st, at, st+1) = ρ[st + at− st+1]−Kta
+
t +Jta

−
t (3)

1 Decision epoch and time period will be used interchangeably throughout this paper.
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for t= 1, . . . ,N −1, where st+at−st+1 = min{Dt, st−a−t } is the number of batteries swapped

at time t. Discrete random variable Dt represents the demand for battery swaps at time t,

st−a−t is the number of batteries available for exchange, ρ is the revenue per battery swap, Kt

is the charging cost per battery at time t, and Jt is the revenue earned per battery discharged

at time t. Specification of Kt and Jt captures the impacts of the nonstationary price for power

over time. We calculate the terminal reward as potential swap revenue from fully charged

batteries; thus, rN(sN) = ρsN .

5. The total number of batteries fully charged at decision epoch t+1 is directly impacted by the

batteries charged, discharged, and exchanged during time period t by way of st+1 = st + at−
min{Dt, st−a−t }. We define the probability of transitioning to state j at time t+ 1 from state

st when action at is taken, denoted pt(j|st, at), by

pt(j|st, at) =


0 if j > st + at or j < a+

t

pst+at−j if a+
t < j ≤ st + at

qst+at−j if j = a+
t

(4)

where pj = P (Dt = j) and qu =
∑∞

j=u pj = P (Dt ≥ u). For further clarification, st + at − j
indicates the number of fully charged batteries that are swapped in period t, and st + at

indicates the number of fully charged batteries on hand at the end of the period if none are

swapped.

When the transition probability is zero, state j exceeds the number of fully charged batteries

the swap station could possibly have on hand at the end of the period (st + at) or state j

is less than the number of batteries the swap station chooses to charge (a+
t ), which are not

available for exchange until after demand is met in that period. In both cases there is a zero

transition probability, as described in the first conditional of the probability function (4).

When the transition probability is P (Dt = st + at− j), as in the second conditional of the

probability function (4), state j is between the number of batteries the swap station charges

and the number of batteries that could possibly be on hand at the end of the period. In

this situation, the swap station has enough fully charged batteries to meet demand, hence

the probability of transitioning to state j is calculated using the time dependent discrete

distribution of demand. We have already established that j cannot fall below the number of

batteries charged in that period, thus the lower bound on j is a+
t .

When the transition probability is P (Dt ≥ st+at−j) where j = a+
t , as in the last conditional

of the probability function (4), demand for battery swaps meets or exceeds the supply of fully

charged batteries available for swapping. In this situation, the station swaps all batteries on

hand but acquires the charged batteries at the end of the period. The transition probability

in this case is calculated using the cumulative probability that demand meets or exceeds the

number of batteries available for swapping in period t.
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To aid the reader, we illustrate the transition probability function using an example. Consider

the case where there are 15 fully charged batteries and 35 depleted batteries in inventory (i.e.,

st = 15) and the swap station charges 5 of the depleted batteries (i.e., at = a+
t = 5). If no batteries

are swapped the station will have a total of 20 fully charged batteries at the end of the period

(i.e., st+1 = j = st +at = 20). There is no possible way to have more than st +at = 20 fully charged

batteries at the end of the period, thus there is a zero transition probability to a state greater than

20. At the beginning of the period there are st + a−t = 15 batteries available for exchange, thus if

all fully charged batteries are swapped, the station still acquires the 5 batteries that were charged

by the end of the period. Therefore, the transition probability to a state less than a+
t = 5 is zero.

When j = a+
t = 5, the 15 batteries that were available at the beginning of the period must have

been swapped, since the 5 charged batteries are acquired at the end of the period. The transition

probability in this case is the probability that demand meets or exceeds st + at− j = 15 batteries,

which is captured in the third conditional. Consider the case when the station has 7 batteries at

the end of the period (i.e., j = 7, which is between a+
t and st +at). We know that 5 batteries were

charged, leaving 2 remaining from the inventory in the previous period. Since the station started

with 15 charged batteries, 13 of them must have been swapped. Thus, the transition probability to 7

batteries is the probability that demand for battery swaps was equal to st+at−j = 15+5−7 = 13.

Having specified the transition probability function pt(j | st, at), we are now able to express the

immediate expected reward function in terms of the current state and action only (see Equation

(5)), which is more desirable for subsequent calculations.

rt(st, at) =
∑

st+1∈S

[
pt(st+1 | st, at)

(
ρ[st + at− st+1]

)]
−Kta

+
t +Jta

−
t (5)

We denote the decision rule functions, dt(st) : st → Ast , which indicate to the decision maker

how to select an action at ∈Ast at a given decision epoch t ∈ T when in state st ∈ S. Because our

decision rules depend on the current state of the system and not the entire history of states, we

consider Markovian decision rules (Puterman 2005). Furthermore, our decision rules prescribe a

single specific action and not a probability distribution on the action set. Therefore our decision

rules are deterministic. A policy π is a sequence of decision rules (dπ1 (s1), dπ2 (s2), . . . , dπN−1(sN−1))

that specify the decision rule to be used at all decision epochs.

The expected total reward of a policy π, when the initial state of the system is s1, denoted

υπN(s1) is given by

υπN(s1) =Es1

[
N−1∑
t=1

rt(st, at) + rN(sN)

]
. (6)

We seek to determine the policy π∗ with the maximum expected total reward. The optimal value

function, u∗t (st), denotes the maximum over all policies of the expected total reward from decision
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epoch t onward when the state at time t is st. We consider optimality equations, or Bellman

equations, that correspond to our optimal value functions as a basis for determining the optimal

policies. The optimality equations are given by

ut(st) = max
at∈Ast

{
rt(st, at) +

∑
j∈S

pt(j|st, at)ut+1(j)

}
(7)

for t= 1, . . . ,N −1 and st ∈ S. For t=N , we have uN(sN) = rN(sN). The solution to the optimality

equation at t= 1 gives the expected total reward for the entire time horizon.

Since the management of an EV swap station is perpetual, a discussion is warranted concern-

ing practical employment of the EV-SSMP model to manage operations beyond the time horizon

considered in this paper. Swap station managers could employ a rolling horizon method (Alden

and Smith 1992) to generate and implement solutions to the infinite horizon, nonhomogeneous

EV-SSMP MDP model. In one such implementation of the rolling horizon method, we fix the time

horizon at |T | periods (e.g., |T |= 168 to look ahead one week and capture day-of-the-week fluctu-

ations), solve the corresponding |T |-period problem, implement the initial policy found during the

next T ′ < |T | periods (e.g., T ′ = 24 to use the day one decision rule to make charging/discharging

decisions), roll forward T ′ periods (e.g., 24 periods), and repeat the method at the new current

state. When repeating the process we incorporate pertinent seasonal and day-of-the-week data for

the new, last day of the horizon. In this manner, the EV-SSMP can be used to manage ongo-

ing operations. Indeed, in conjunction with a rolling horizon method, the EV-SSMP MDP model

enables consideration of seasonal effects on prices and consumer behavior, and allows the prescrip-

tion of policies that account for such information. One important caveat is that because the horizon

used in the rolling horizon method is fixed and finite, the sequence of policies generated may not be

optimal. Nonetheless, a series of rolling finite horizon solutions provides a reasonable approximate

solution to an infinite horizon, nonhomogeneous EV-SSMP.

3. Theoretical Results and Methodology

In this section we first prove that an optimal nonincreasing monotone policy exists for the EV-

SSMP when the demand is governed by a discrete nonincreasing distribution. Using this result, we

describe exact solution methods and two heuristic benchmark policies.

3.1. Optimal Structural Properties

Determining if the optimal policy of a MDP contains structure, such as monotonicity, is significant

due to the ease of implementation, appeal to decision makers, and the ability for faster computation

time (Puterman 2005). When an optimal policy has a monotone structure, it can be solved with

specialized and more efficient algorithms. As such, we wish to prove that our system contains a

nonincreasing monotonic structure.
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A policy π is said to be nonincreasing if for each t= 1, . . . ,N −1 and any pair of states si, sj ∈ S

with si < sj, it is true that dπt (si)≥ dπt (sj). We can demonstrate a nonincreasing monotone policy

using a series of five properties regarding the reward function and the probability of moving to a

higher state (Puterman 2005). Define

gt(k|st, at) =
∑

j∈{S|j≥k}

pt(j|st, at), t= 1, . . . ,N − 1 (8)

as the probability of moving to state j ≥ k at decision epoch t+ 1 when action at is chosen in

state st at decision epoch t. Let Ast = A′ for all st ∈ S, where A′ = {∪st∈SAst} is the set of all

possible actions independent of the state of the system. We note that a function, f(x, y), is said to

be subadditive (Puterman 2005) if for x≥ x̃ and y≥ ỹ,

f(x, y) + f(x̃, ỹ)≤ f(x, ỹ) + f(x̃, y). (9)

Theorem 1. There exists optimal decision rules d∗t : st→Ast for the EV-SSMP that are non-

increasing in st for t = 1, . . . ,N − 1 when demand Dt is governed by a nonincreasing discrete

distribution.

The claim is shown by demonstrating that the EV-SSMP exhibits the following 5 conditions

(Puterman 2005).

1. rt(st, at) is nondecreasing in st for all at ∈A′,

2. gt(k|st, at) is nondecreasing in st for all k ∈ S and at ∈A′,

3. rt(st, at) is a subadditive function on S×A′,

4. gt(k|st, at) is a subadditive function on S×A′ for all k ∈ S, and

5. rN(sN) is nondecreasing in sN .

Please see Appendix A for full details of the proof. In Theorem 1 it is proven that there exists

optimal decision rules for the EV-SSMP that are nonincreasing in st when demand is governed by

a nonincreasing discrete distribution. Consider two possibilities for the state (i.e., number of full

batteries) at a swap station st ≥ s̃t. Through the proof of Theorem 1, we have shown that there

exists optimal decision rules (i.e., optimal selected actions) such that the swap station will never

charge less (or discharge more) batteries when in state state s̃t as compared to st. Utilizing this

result, we outline exact solution methods and two benchmark solution methods.

3.2. Optimal Solution Methods

The objective in solving our Markov decision problem (MDP) is to determine a policy that max-

imizes the expected total reward criterion expressed in Equation (6). The set of states S is finite

and the action set Ast is finite for each st ∈ S. Therefore there exists a deterministic Markov policy
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that is optimal. We find an optimal policy for this finite horizon model by using the backward

induction algorithm (Puterman 2005). This dynamic programming algorithm finds the optimal

policy, or specifically, the optimal number of batteries to charge and discharge at each decision

epoch, that maximizes the expected total reward. The backward induction algorithm finds sets

A∗st,t that contain all actions in Ast that attain the maximum for the optimality equations (7). The

algorithm also evaluates the policy and computes the expected total reward from each period to

the end of the decision making horizon.

Our policy contains a nonincreasing monotonic structure when demand is governed by a dis-

crete nonincreasing distribution, thus we also utilize the monotone backward induction algorithm

(Puterman 2005) to find an optimal policy. The nonincreasing monotone backward induction algo-

rithm modifies the original algorithm by redefining the action set at each iteration of st to be

limited by the optimal decision rule of st − 1 for each t ∈ T . For example, if the optimal deci-

sion rule at st = 10 is to charge 20 batteries, then the action space for st = 11 will now be A11 =

{max(−11,−Φ), . . . ,0, . . . ,min(20,Φ)} instead ofA11 = {max(−11,−Φ), . . . ,0, . . . ,min(M−11,Φ)}.

The modifications to the algorithm will result in an optimal policy when demand is governed by

a discrete nonincreasing distribution; note however, that there may be alternative optima that are

not monotone.

When there are |S| states, |A′| actions in each state where A′ = {∪st∈SAst}, and N time periods,

the backward induction algorithm requires (N−1)|A′||S|2 multiplications to determine the optimal

policy, which is a considerable improvement from complete enumeration of all possible solutions.

Complete enumeration takes (|A′||S|)(N−1)(N − 1)|S|2 multiplications. In the worst case scenario,

the monotone backward induction algorithm’s computational effort equals that of the backward

induction, however, when the policy is nonincreasing the action sets decrease in size with increasing

st and reduce the number of actions that need to be evaluated (Puterman 2005).

3.3. Benchmark Policies

We consider two benchmark policies such that the swap station charges-up-to or discharges-down-

to a set target level, ζt, at each decision epoch t. The design of these benchmark policies using a

target level ensures the determined policy exhibits a monotone nonincreasing structure. The first

benchmark policy is a stationary benchmark policy that picks a set target level ζ and sets ζt = ζ

for all time periods t. The second is a dynamic benchmark policy and utilizes a distinct ζt for each

time period t. Utilizing each target level, the policy can be determined by calculating the action for

each state and time period with a simple calculation. Thus, this policy can be easily implemented

by the swap station manager.
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If the state, st, is less than or equal to the target level, ζt, the swap station does not have as

many fully charged batteries as desired, thus they will charge or do nothing. The most that can

be charged at any point in time, denoted C, is given by

C = min{M − st,Φ}. (10)

If st is greater than ζt the swap station has more fully charged batteries than desired, thus they will

discharge. The most that can be discharged at any point in time (i.e., the most negative action),

denoted D, is given by

D= max{−st,−Φ}. (11)

The stationary benchmark decision rule dπst (st) is then given by

dπst (st) =

{
min{ζ − st,C} if st ≤ ζ,
max{ζ − st,D} if st > ζ,

(12)

and the dynamic benchmark decision rule d
πd
t (st) is given by

d
πd
t (st) =

{
min{ζt− st,C} if st ≤ ζt,
max{ζt− st,D} if st > ζt.

(13)

For the first benchmark policy πs, we derive a stationary target level ζ, where ζ is calculated as

a percentage of the number of batteries M using constant parameter Cs. Equation (14) calculates

ζ using a traditional rounding function. In the second benchmark policy πd, we derive dynamic

target levels ζt at each decision epoch as a rounded function of the number of batteries M , current

and future charging costs, Kt and Kt+1, and the mean demand in the following time period, λt+1.

The constant is a function of the charging cost in the current time period t and the next time

period t+ 1. If the charging price will increase (i.e., Kt ≤Kt+1) it is desirable to charge as many

batteries as possible in time period t. Contrarily, if the charging price is going to decrease (i.e.,

Kt >Kt+1) then it is desirable to charge more batteries in time period t+ 1. However, to ensure

that demand is met even when it is desirable to charge in subsequent periods, we derive the target

as a linear function of the mean demand in the next time period, λt+1, and the average number of

swaps, γ, using constant parameter Cd. Target levels are calculated using a traditional rounding

function of the average number of swaps that will occur in the next time period (see Equation

(15)).

ζ = bCsM + 0.5c (14)

ζt =

{
M if Kt ≤Kt+1

bM
(

Cd(λt+1)

γ

)
+ 0.5c if Kt >Kt+1

∀t= 1, . . . ,N − 1 (15)
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The performance of these benchmark policies will be sensitive to the selection of Cs and Cd; thus,

a computational study should be conducted for the data specific to each swap station. We explain

our selection of these parameters and validate the benchmark policies in Section 4 as usable for

real time decision making activities due to their speed of calculation and accuracy.

4. Computational Results

In this section, we computationally test the EV-SSMP on a variety of different scenarios. From the

optimal policies, we deduce insights beneficial to a swap station manager. Further, we quantify the

accuracy and speed of the two benchmark policies as compared to the optimal policy found via an

optimal solution method.

The time horizon we examine is a full week in one hour increments. Thus, the time horizon is

N = (24)(7) + 1 = 169 and the number of decision epochs is N −1 = 168. The first decision is made

on Monday at 0000, the second on Monday at 0100, until the last decision is made on Sunday at

2300. We utilize historical hourly charging cost data from 2013 in the Capital Region, New York,

obtained from National Grid (2013). We use one week from each season in our analysis due to

the varying climate and drastic variation in prices throughout the year. January 21-27 is used for

Winter, April 15-21 for Spring, July 15-21 for Summer, and September 23-29 for Fall. Note that

the sum of power prices over every hour of the week is at the maximum for January 21-27 and at

a minimum for September 23-29 in 2013. The charging cost per kWh at each time t is multiplied

by 60 to calculate the cost to charge one battery, Kt, which is consistent with the Tesla Model S

60 kWh battery option (Tesla motors 2014d). Charging can be completed in an hour with level

2 or 3 charging (Morrow et al. 2008) and is comparable to the Tesla supercharger option (Tesla

motors 2015). The charging cost per battery per hour for the four weeks of interest is illustrated

in Figure 2. For our computational tests, we set the discharge revenue, Jt, equal to a percentage of

the charging cost, Jt = αKt, with α between 0.75 and 1.25. The α parameter enables examination

of pricing mechanisms employed by the power company to incentivize a swap station to discharge

at favorable points in times.

We consider a similar methodology to derive the distribution for swap demand at each hour

as Nurre et al. (2014). The authors assume that the behaviors for arrivals at a swap station will

mimic the currently observed behaviors at a gas station. Due to the fact that swap stations are

being considered for adoption, we do not have actual swap station demand data. Thus, because one

benefit of the swap station is convenience, we assume that the time when it is currently convenient

to refill with gasoline will be similar to the convenient times for swapping. Nurre et al. (2014)

calculate the percentage of people who will frequent a gas station for each hour of a day and day of

a week based on historical data at Chevron gas stations (Nexant, Inc. et al. 2008). We utilize this
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Figure 2 Charging cost KtKtKt per battery per hour in the Capital Region, NY.

percentage to calculate the mean arrival rate of customers X̄t, for each decision epoch t. Specifically,

we consider a time horizon with an average of γ swaps and set X̄t equal to the product of γ and

the percentage of swaps occurring at the station at time t from Nurre et al. (2014). As a simple

example, one could assume that an EV makes one swap per time horizon and thus, γ represents

the number of EVs in a location.
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Figure 3 Mean arrival rate of customers λtλtλt in a location with 3,000 swaps by hour and day of the week.

We consider two distributions for modeling swap demand Dt: geometric and Poisson. When

swap demand Dt follows a geometric distribution with parameter Pt, we set Pt = 1
X̄t+1

. When swap

demand Dt follows a time dependent Poisson process with parameter λt, we set λt = X̄t. Note

that the geometric distribution is a nonincreasing discrete distribution, therefore as was proven

in Theorem 1, a monotonic nonincreasing policy is optimal. The mean arrival rate of customers

λt = X̄t for each hour of each day in a location with γ = 3,000 can be seen in Figure 3. We assume

that the arrival rate is the same for each week of the year.
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To computationally test the EV-SMMP, we conduct two designed experiments. The first designed

experiment is conducted to gain insights when a wide range of inputs are considered. Specifically, we

analyze the effects of non-controllable parameters, or external factors, such as demand, percentage

earned from discharging batteries, and seasonal charging cost variations. The second designed

experiment is conducted with targeted values based on the results of the first experiment. With this

second experiment, we are able to determine how to appropriately set the controllable parameters,

or internal factors, at a swap station such as swap price, number of batteries the swap station

should have, and the charging capacity. With both, we utilize the expected total reward, percentage

of met demand, and policies to infer policy insights.

4.1. Analysis of External Factors

We analyze the external factors, or those factors which will be outside of the direct control of the

swap station, by conducting a Latin hypercube designed experiment with a wide range of inputs.

With these results, we conduct a Monte Carlo simulation with three sample paths for observed

demand to examine how uncertain demand impacts the operations throughout a typical week.

Then, we address the incentives necessary to be offered to the swap station by the power company

to encourage favorable discharging while simultaneously meeting demand. Finally, we analyze how

the drastic variation of seasonal charging costs affects the expected total reward and the percentage

of demand that is met.

4.1.1. First Latin Hypercube Designed Experiment. We perform a 50-scenario Latin

hypercube designed experiment, which is a widely used design for deterministic computer sim-

ulation models (Montgomery 2008). This space filling design spreads the design points nearly

uniformly to better characterize the response surface in the region of experimentation. For this

designed experiment, we find the expected total reward using the monotone dynamic programming

algorithm when demand is geometric. When demand follows a time dependent Poisson process we

calculate two policies with corresponding expected total rewards: the optimal policy is found using

the backward induction algorithm, and a heuristic policy is found using the monotone backward

induction algorithm. We note, that the monotone policy is not always optimal when demand fol-

lows a time dependent Poisson process, however empirically we have observed it to be optimal or

near-optimal in the majority of cases. Because we look at four separate weeks for charging cost

data, we consider Kt a categorical factor with four levels representing the four weeks extracted

from the year. We conduct the 50-scenario design for each of the four seasons and each of the

two demand distributions, resulting in a total of 400 scenarios. Factors examined in the design

include the total number of batteries M , the charging capacity Φ, the average number of swaps

in the local area γ, the revenue per battery swap ρ, and the percentage α of revenue earned from
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discharging with respect to the charging cost. Using JMP11Pro software, we generate a 50-scenario

design with various levels of each factor ranging between two values. The high and low levels used

for this experiment are displayed in Table 1. The charging costs for the four weeks of interest,

KW
t ,K

Sp
t ,KSu

t , and KF
t , are representative of Winter, Spring, Summer, and Fall, respectively. We

set the low value for the swap revenue ρ to less than the minimum charging cost over the four

weeks and the high value for ρ to greater than the maximum charging cost.

Table 1 Factor levels for first Latin hypercube designed experiment.

Factor Low High
Total Number of Batteries M 50 200
Charging Capacity Φ b0.25Mc M
Swap Revenue ($) ρ 1 20
Percent Discharge Revenue (%Kt) α 0.75 1.25
Avg. Swaps in the Local Area γ 1,000 6,000

When considering the time dependent Poisson process for demand, the monotone policy was

optimal in 128 out of 200 scenarios. Of the 72 scenarios that were not optimal, 48 of them were

within 1% of optimality. Of the 24 scenarios not within 1% of optimality, the average percentage

gap was 8.67%. Therefore, while the monotone policy is not always optimal when demand does

not follow a nonincreasing distribution, we empirically observe that it provides a good approxima-

tion. Further, we observe very similar optimal policies when using Poisson and geometric demand.

Discharging is more prevalent when demand follows a Poisson process, however, discharging does

occur when demand is governed by a geometric distribution. Due to the similarities seen, the results

presented herein apply to both distributions unless otherwise stated.

The results from this experiment, when demand follows a time dependent Poisson process and

the monotone backward induction algorithm is used, indicate that all factors have a statistically

significant effect on the expected total reward at the 95% confidence level. As expected, the swap

revenue ρ has the greatest impact on the expected total reward. Thus, the most effective way

to increase profit would be to increase the swap price, however this is based on the assumption

that demand for swaps is independent of the swap price, which is unrealistic. Future work should

consider the sensitivity of customer demand to the price for swapping, as utilizing a charging station

can occur instead of swapping. We also note that although the charging capacity Φ is statistically

significant, the effect on the profit is small compared to the other factors.

4.1.2. Effects of Uncertain Demand on Swap Station Operations. In this set of analy-

ses, we seek to characterize the day-to-day operations at the swap station when faced with uncertain

demand. We illustrate the state of the system, or the number of fully charged batteries the swap

station has on hand, when operating using the monotone structured policy throughout a typical
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week for a swap station with M = 50, Φ =M, ρ= 15, γ = 3,000, α = 1, and Kt =KSp
t . We note

that in this scenario the nonincreasing monotone policy results in an optimal policy. We generate

three sample paths for observed demand at the swap station. In the first sample path, we assume

that the demand observed at the swap station is exactly the mean arrival dλte when demand follows

a Poisson process. We then use Monte Carlo simulation to generate two sample paths for observed

demand at each decision epoch based off the time dependent Poisson process and known mean

arrival rate. We calculate the state at the next decision epoch t+ 1 using the monotone policy

decision rule d∗t (st) for the current state st and time t and the observed demand, denoted X̂t, by

way of

st+1 = st + d∗t (st)−min
{
X̂t, st− |min{d∗t (st),0}|

}
. (16)
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Figure 4 State and action over a week time period for three simulated observed demands.

Assuming the swap station starts with all full batteries, we examine an entire week. The state

of the system at each decision epoch and the corresponding action are shown in Figure 4. From

this figure, we first note that our assumption that the swap station starts with all full batteries

at the beginning of a time horizon is not a simplifying assumption as the number of full batteries

naturally increases at the start of each day. We also note that the state of full batteries stabilizes

at around 25 batteries in the mid-late afternoon each day. Moreover, the state and action taken

is relatively consistent for each of the three observed sample paths of demand. This is a desirable

result, leading to the policy insight that the action taken in relation to the state balances. In the

observed scenario, when the sample path for observed demand is the mean arrival dλte, 91.25% of

demand is met when this policy is implemented. Our second designed experiment addresses the

relationship between the internal controllable parameters to ensure an acceptable level of demand

is met.
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4.1.3. Percentage Earned for Discharging Insights. We proceed with our analysis by

seeking to determine what incentive (α) the power company will provide the swap station to

encourage favorable discharging behavior. We examine the monotone structured policies for differ-

ent scenarios when demand follows a Poisson process. In Figure 5 we illustrate the policies for a

scenario with M = 50, Φ =M, ρ= 15, γ = 3,000, and Kt =KSp
t differentiated by three values for

α. We note that in this scenario the nonincreasing monotone policy results in an optimal policy for

each of the α values. For a typical Wednesday, Figures 5a, 5b, and 5c show the policies in 4 hour

increments. For α= 0.75, we observe that the monotone policy rarely indicates to discharge. The

optimal action rarely drops below zero (the grayed area of Figure 5a). For α= 1 discharging does

occur when the number of full batteries at the swap station is above some inventory threshold; this

threshold varies for each time period. For α= 1.25, the optimal policy alternates between charging

and discharging when the swap station has about 28 or more fully charged batteries, as can be

seen in Figure 5c.

Total # Batteries Fully Charged, s
t

#
 o

f 
B

a
tt

e
ri
e

s
 t

o
 C

h
a

rg
e

/D
is

c
h

a
rg

e
, 

a
t

Monotone Structured Policy

 

 

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

Discharge

Wed 0000

Wed 0400

Wed 0800

Wed 1200

Wed 1600

Wed 2000

(a) α= 0.75

Total # Batteries Fully Charged, s
t

#
 o

f 
B

a
tt

e
ri
e

s
 t

o
 C

h
a

rg
e

/D
is

c
h

a
rg

e
, 

a
t

Monotone Structured Policy

 

 

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

Discharge

Wed 0000

Wed 0400

Wed 0800

Wed 1200

Wed 1600

Wed 2000

(b) α= 1

Total # Batteries Fully Charged, s
t

#
 o

f 
B

a
tt

e
ri
e

s
 t

o
 C

h
a

rg
e

/D
is

c
h

a
rg

e
, 

a
t

Monotone Structured Policy

 

 

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

Discharge

Wed 0000

Wed 0400

Wed 0800

Wed 1200

Wed 1600

Wed 2000

(c) α= 1.25

Figure 5 Monotone policy by percentage of the charge cost earned for discharging, α.α.α.
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Figure 6 Actions taken throughout a typical week by percentage of the charge cost earned for discharging, α.α.α.

We further examine the actions that will be taken throughout a typical week based on the

number of fully charged batteries available in each time period. To do this, we simulate a typical

week assuming that the demand observed at the swap station is exactly the mean arrival dλte. The
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actions taken throughout the week differentiated by three values for α can be seen in Figure 6. When

α= 0.75, we observe in Figure 6a that discharging does not occur for the entire week even though

the policy in Figure 5a does indicate discharging. Further, when α= 1.25, the effect of alternating

between charging and discharging in the policy in Figure 5c can be seen by the oscillation in

Figure 6c. From this observation, we examine all policies from the designed experiment with α< 1

and α > 1 to see if the policies mimic those when α= 0.75 and α= 1.25, respectively. In general,

we notice that when α < 1 discharging is much less prevalent, unless there are significantly more

batteries than needed to meet demand or ρ is set too low compared to the charging costs, resulting

in the situation where discharging earns more revenue than meeting swap demand. The swap station

must consider the cost to have significantly more batteries than needed to meet demand to aid the

power grid by discharging at a discounted rate. When α> 1 the oscillating trend of charging and

discharging is present. The negative behavior of oscillating between charging and discharging in

consecutive time periods could lead to further variability in the power grid. Thus, from the power

companies perspective, when α = 1 the swap station exhibits a good balance between charging

and discharging. From this analysis concerning α, we have deduced the policy insight that to

maintain the dual purpose of the swap station of meeting swap demand and still exhibiting some

favorable V2G discharging behavior that the money earned from discharging should exactly equal

the charging cost, which is attained when α = 1. Thus, in our further analysis we focus on the

scenarios when α= 1.

4.1.4. Seasonal Variations. Next, we seek to characterize the day-to-day operations at the

swap station when faced with highly variable charging cost data by season. For each of the four

seasons, we examine the monotone structured policy when demand follows a Poisson process for

the scenario with M = 96, Φ =M, ρ= 4.88, γ = 4,980, and α = 1. We note that for each season

in this scenario, the nonincreasing monotone policy results in an optimal policy. For each season,

we simulate a typical week assuming that the demand observed at the swap station is exactly the

mean arrival dλte. Note, the average charging costs are $9.58, $2.86, $4.80, and $2.17 for Winter,

Spring, Summer, and Fall, respectively and the swap price in this scenario is $4.88.

Figure 7 illustrates the actions taken and the number of batteries swapped compared to demand

for Winter. In this case, ρ is too low relative to the charging costs for the swap station to meet

demand over the opportunity cost to discharge to earn revenue. Thus, the actions taken throughout

the day alternate between charging and discharging (see Figure 7a) and only 1.62% of demand is

met (see Figure 7b). Figure 8 illustrates the actions taken and the number of batteries swapped

compared to demand for Spring. In this case, ρ is appropriately set relative to the charging costs.

The swap station is motivated to meet demand over discharging to earn revenue. The actions taken
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Figure 7 Action and met demand over a week for simulated observed demand in Winter.
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(b) Demand compared to batteries swapped.

Figure 8 Action and met demand over a week for simulated observed demand in Spring.

throughout the day are more stabilized (see Figure 8a) than in Winter and 97.18% of demand is

met (see Figure 8b). Figure 9 illustrates the actions taken and the number of batteries swapped

compared to demand for Summer. In this case, ρ is set higher than the average charging cost,

however the highly variable prices in Summer cause alternating between charging and discharging

(see Figure 9a) and 46.34% of demand is met (see Figure 9b). While this is an improvement over

Winter, these results indicate a higher ρ is necessary in Summer or the ρ value should vary by time

of day. Figure 10 illustrates the actions taken and the number of batteries swapped compared to

demand for Fall. We see similar results as in Spring due to very similar charging costs. The swap

station is motivated to meet demand over discharging to earn revenue (see Figure 10a) and 97.24%

of demand is met (see Figure 10b).

For each season, we notice that when less demand is being met, the expected total reward is less.

The expected total rewards for this scenario are $6,042.66, $9,754.82, $6,478.43, and $13,128.20 for

Winter, Spring, Summer, and Fall, respectively. From these results, we deduce the policy insight

that it is necessary to set the swap price ρ appropriately based on the seasonal charging costs to
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(b) Demand compared to batteries swapped.

Figure 9 Action and met demand over a week for simulated observed demand in Summer.
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(b) Demand compared to batteries swapped.

Figure 10 Action and met demand over a week for simulated observed demand in Fall.

meet demand over the opportunity cost to discharge. We address this in our second experiment by

using different ranges for ρ in each season.

4.2. Analysis of Internal Factors

We analyze the internal factors by conducting a Latin hypercube designed experiment with more

targeted values based on insights drawn from the first experiment. These insights include setting

the discharge revenue exactly equal to the charging cost for desirable discharging and satisfaction

of demand and setting ρ appropriately with respect to the seasonal charging costs. The goal of the

second experiment is to draw insights on the appropriate levels of the controllable parameters at

the swap station, or synonymously the internal factors.

4.2.1. Second Latin Hypercube Designed Experiment. For the second designed exper-

iment, we seek to determine the appropriate levels for internal factors in relation to the non-

controllable external factors. Specifically, we seek to gain insights into acceptable levels for the

number of batteries M , charging capacity Φ, and swap price ρ. With this, we broaden our focus
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to include, in addition to the expected total reward, the expected amount of demand that is met.

We perform a second Latin hypercube designed experiment with 40 scenarios, which is generated

using JMP11Pro software. The high and low levels used for this experiment are shown in Table

2. Different high and low values for ρ are used in each season. The lower bound on ρ is found by

rounding the average charging cost to the nearest dollar in each season and the upper bound is set

to approximately 1.5 times the maximum charging cost.

Table 2 Factor levels used for the second Latin hypercube designed experiment.

Factor Low High
Total Number of Batteries M 50 200
Charging Capacity Φ b0.25Mc M
Winter Swap Revenue ($) ρW 10 25
Spring Swap Revenue ($) ρSp 3 10
Summer Swap Revenue ($) ρSu 5 20
Fall Swap Revenue ($) ρF 2 8
Avg. Swaps in the Local Area γ 1,000 6,000

We execute this experiment for two cases: when demand follows a geometric distribution and

when demand follows a Poisson process. Both a monotone policy and an optimal policy are found

when demand follows a Poisson process. Because Poisson is not a monotonic nonincreasing dis-

tribution, the monotone policy is not guaranteed to be optimal. However, when demand follows

a time dependent Poisson process, we found that for the 160 scenarios in this experiment, the

monotone policy is optimal in all but 18 scenarios. Of the 18 scenarios that are not optimal, the

maximum percentage gap is 1.84%. This leads us to the policy insight that a monotone policy is

a good approximation for the optimal policy even when demand is not governed by a nonincreasing

distribution.

The expected total reward found for all scenarios are very similar when demand follows a Poisson

process and when demand follows the geometric distribution. When comparing the expected total

reward found for the same scenarios, solved with demand following a geometric distribution and

a Poisson distribution, a total of 153 out of 160 scenarios were within 10% of each other. Due to

these similarities, we focus on presenting the monotone policies found for scenarios when demand

follows a Poisson process.

When examining the results from this second designed experiment, we find that M , ρ, γ, and sea-

sonal charging cost, Kt have a significant effect on the expected total reward at the 95% confidence

level. When analyzing the expected percent of demand that is met when the monotone structured

policy is implemented, we conclude that M , γ, and ρ are significant. We proceed with our analysis

by further examining the policies found under different scenarios with the goal of gaining insight

into the acceptable levels for the controllable internal factors at a swap station.
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4.2.2. Charging Capacity Insights. By examining the utilization of the charging capacity,

percentage of demand met, and expected total reward under different circumstances, we seek to

gain insight into the number of physical plug-ins (i.e., charging capacity) the swap station should

install. We first note that the charging capacity Φ was found to have a slight effect in the first

designed experiment. However, when we focus on α= 1 and season specific ρ we find that charging

capacity does not have a significant effect on the expected total reward, which leads to the policy

insight that the swap station has flexibility when designing the charging infrastructure at the swap

station. For all seasons when the charging capacity is higher, the swap station uses the full charging

capacity available, which does not ultimately increase profit. Whether or not the swap station is

utilizing a small charging capacity or a large charging capacity, the percentage of demand that the

swap station is able to meet remains unaffected. One driving factor in the satisfaction of demand

is the number of batteries at the swap station, which we will discuss in Section 4.2.4. Further,

long-term analysis needs to be conducted to better inform the charging capacity that should be

installed at each swap station. This analysis should include forecasts for the change in adoption of

EVs over time in comparison to the price for expansions or future installations of charging capacity.

4.2.3. Effect of Swap Price on Meeting Demand. This next set of analyses seeks to

determine how the price charged per battery swap impacts the percentage of met demand. As was

demonstrated in Section 4.1.4, the swap price charged is in direct competition with the discharging

revenue that could be earned. Thus, we examined swap prices in different ranges based on season.

The seasonal charging cost Kt was found to be not significant with respect to percentage of demand

met. This indicates the season specific swap prices selected mitigated the issues seen in Section

4.1.4 when discharging occurred instead of meeting swap demand when the discharging revenues

(i.e., charging costs) were high, such as in Winter and Summer. Further, increasing the swap price

ρ motivates the satisfaction of more demand over discharging for all seasons. We deduce the policy

insight that in each season to meet over 95% of demand, a swap price of approximately $20, $6,

$14, and $5 is desirable for Winter, Spring, Summer, and Fall, respectively. These prices are in

line with the maximum charging cost for Winter and Summer but are slightly higher than the

maximum for Spring and Fall. This difference by season is a direct result of the range of charge

cost for each season. For both Winter and Summer, the range of charge cost is large; thus, when

the swap price is set to the maximum charge cost and the charge cost is low, an increased amount

of revenue can be earned by balancing out the times when swap price equals the maximum charge

cost. In contrast, for Spring and Fall the ranges for charge cost are small leading to the result that

the swap price needs to be slightly higher than the maximum charge cost.
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4.2.4. Number of Batteries Insights. Next, we focus on determining a threshold level of

batteries that are needed at the swap station to meet demand. Because ρ has a strong impact on

the percentage of demand that is met at a swap station, in this analysis we deliberately set ρ to

deduce the impact of M on the percentage of met demand. Specifically, we set ρ to be $20, $6,

$14, and $5 for Winter, Spring, Summer, and Fall, respectively, which are the values found as a

result of the analysis presented in Section 4.2.3. Using the parameters from the second designed

experiment at the constant ρ value in each season, we determine that for this data set the swap

station should have approximately M = 3%γ batteries or more at the swap station to meet at least

95% of demand. This leads to the policy insight that the number of batteries M must be in line

with the average number of swaps in the local area γ to be able to satisfy demand.

4.3. Validation of Benchmark Policies

In this subsection, we examine the benchmark policies to assess their accuracy and speed. For

all scenarios in the second Latin hypercube experiment, we test the stationary benchmark policy

πs with Cs = 0.8 (see Equation (17)) and the dynamic benchmark policy πd with Cd = 100 using

Equation (18). In the stationary policy, the constant Cs was chosen with the goal that the swap

station should have 80% of their batteries fully charged at any point in time. As we saw in the

analysis presented in Section 4.1.2, the number of full batteries levels out at around 50% of full

batteries. However, earlier times of each day have more full batteries. Thus, 0.8 was selected so

that the swap station can ensure a high level of met demand by aiming to have a high number

of batteries available for swapping. We incrementally increased from 0.5 upward and found 0.8 to

perform best for the stationary benchmark policy.

However, as we have seen in analysis on the day-to-day operations of the swap station, the state

of the system is highly dependent on time. Thus, for the dynamic benchmark policy, the constant

Cd was chosen so that the swap station would have a sufficient number of batteries to meet the

mean demand in the following period without charging more than needed, if the cost to charge is

going to decrease. If the cost to charge is going to increase in time t+ 1, the swap station should

charge as much as possible in time t at a cheaper price regardless of demand. We found that

setting Cd = 100 accomplished this goal. With Cd = 100 in Equation (18), the resulting target is

exactly the percentage of mean battery swaps occurring in the next time period in relationship

to the mean swaps over the time horizon times 100%. As was done in the stationary benchmark

policy, we tested for values higher and lower than Cd = 100 and found this selection to empirically

perform best. We note, however, that analysis should be conducted with different data sets, as the

performance of the benchmark policies is sensitive to the selection of Cs and Cd.

ζ = b0.8M + 0.5c (17)
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ζt =

{
M if Kt ≤Kt+1

bM
(

100(λt+1)

γ

)
+ 0.5c if Kt >Kt+1

t= 1, . . . ,N − 1 (18)

For all tests, we compare the computation time, optimal expected total reward, and expected

percentage of met demand to an optimal policy found via the backward induction algorithm (BI).

An optimality gap is calculated using the optimal expected total reward υ∗N(s1) and found expected

total reward υπN(s1) for policy π using Equation (19), where an optimality gap of 0.00% indicates

an optimal solution has been found.

Optimality Gap =
υ∗N(s1)− υπN(s1)

υ∗N(s1)
(19)

The expected percentage of demand met is compared by calculating a demand gap equal to the

subtraction of the value found in the benchmark policy from the value found in the optimal policy.

With this calculation, a positive number indicates that the optimal policy is meeting more demand,

whereas a negative number indicates the benchmark policy is meeting more demand.

For the stationary benchmark policy, the average optimality gap is 20.33% when we exclude

scenarios with unrealistically low swap prices. The average demand gap is −1.28%, meaning on

average the stationary benchmark policy meets 1.28% more demand than the optimal policy. At

best, the πs policy meets 32.63% more demand and at worst πs meets 12.26% less demand than the

optimal policy. For the dynamic benchmark policy, the average optimality gap is 17.76% when we

don’t include scenarios with unrealistically low swap prices. The average demand gap is −2.35%,

meaning on average the dynamic benchmark policy meets 2.35% more demand than the optimal

policy. At best, the policy meets 3.75% more demand and at worst πd meets 8.64% less demand

than the optimal policy. The full results of the benchmark policies for Winter, Spring, Summer,

and Fall are presented in Appendix B.

These results indicate that the dynamic benchmark policy outperforms the stationary benchmark

policy due to decreased optimality gaps and demand gaps. Specifically, we found the πd policy to

have decreased optimality gaps and much smaller demand gaps than the πs policy over all scenarios.

Since many of the parameters are unknown, the result of these benchmark policies perform well

over a wide range of possibilities. For future work we recommend additional analysis of potential

benchmark policies when more of the parameters are known. The swap station must also consider

the cost of the capability to solve the model to optimality versus the loss in profit from implementing

a benchmark policy.

Optimal solution methods require the use of probability transition matrices and reward vectors

to calculate the optimal policy, while benchmark policies only require probability matrices and
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reward vectors to evaluate the policy, not calculate the implementable action. The average times

for creating the probability matrices and reward vectors were 1921.94 and 18.58 seconds, respec-

tively. The average computation time for the backward induction algorithm was 27.86 seconds.

The average computation time for the benchmark policies was 4.03 seconds. Computations were

done using MATLAB R2014a software on a 2.4 GHz Intel Core i5 processor laptop with 4GB 1600

MHz DDR3 of memory.

We deduce the policy insight that the dynamic benchmark policy could be a viable option

for implementation at a swap station. This benchmark policy allows for an easy calculation and

subsequent implementation at the swap station of the number of batteries to charge and discharge

over time based off a target level for each hour of a week. Therefore, all that is needed is 168 target

values; one value for each hour of the week. In contrast, implementation of the optimal policy would

require a very large look up table by state and time. For a modest amount of 50 batteries, there is

a corresponding look up table of 168(M) = 168(50) = 8,400 values. Further, we hypothesize that

the smaller amount of numbers and easily described benchmark policies could increase the user

trust in the output solution.

4.4. Summary of Policy Insights

We summarize the results and analysis of these computational tests in the following policy insights

for an EV swap station manager and the power grid.

1. The state and action taken throughout a week is consistent. Thus, we conclude the action

taken in relation to the state balances, enabling the desirable property of consistent status of

the swap station (i.e., number of full batteries) by day even when faced with uncertainty.

2. When the incentive to discharge is too high, the negative behavior of oscillating between

charging and discharging in consecutive time periods occurs at the swap station, thereby

leading to further variability in the power grid. When the incentive is too low and ρ is set

appropriately, discharging rarely occurs. We conclude that α = 1 (the revenue earned from

discharging is exactly the cost for charging) results in a good balance of some discharging but

limited oscillating behavior, thereby enabling the dual purpose of the swap station.

3. To ensure that the swap station is meeting demand and not solely focused on discharging to

earn revenue, the swap price must be set appropriately with respect to the seasonal charging

costs. For at least 95% of demand to be met on average, the swap station should set the swap

price equal to the maximum charging cost for Winter and Summer, and slightly higher than

the maximum for Spring and Fall.

4. When the distribution for demand at the swap station does not have a nonincreasing structure,

the monotone policy provides a good approximate solution. This allows for ease of implemen-

tation of the structured policy and provides a basis for the development of future benchmark

policies.
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5. An EV swap station has flexibility when designing the physical swap station charging capacity.

When the revenue earned from discharging is exactly the cost for charging the expected total

reward and percentage of demand that is met is unaffected by charging capacity. A greater

charging capacity will be used if available but does not ultimately have a significant effect on

profit or meeting demand as indicated by our region of experimentation. Future work should

examine charging capacity values not correlated with the number of batteries.

6. It is integral to have the number of batteries at your swap station M in line with the average

number of swaps or EVs in the local area γ for meeting demand, maximizing expected total

reward, and allowing for discharging back to the power grid using V2G. We determine that

for this data set the swap station should have approximately M = 3%γ batteries or more at

the swap station to ensure 95% of demand is met on average.

7. The dynamic benchmark policy that calculates a target level for each time period in a time

horizon was superior to a stationary benchmark policy. The action for the dynamic benchmark

policy is to charge-up-to or discharge-down-to this time dependent target level based on the

number of full batteries on hand.

8. For all scenarios considering different number of batteries, charging capacity, swap revenue,

charging cost by week, incentive to discharge, and average number of swaps per week in a

local area, the swap station was always able to remain profitable with our model. Certain

combinations of these factors led to greater profitability, but this result indicates that in all

circumstances considered, a swap station is a viable, profitable option for EVs.

5. Conclusions

We have considered the problem of managing the operations at an electric vehicle swap station

when demand for swaps is uncertain. In this context, we seek to determine how many batteries

the swap station should charge and discharge (utilizing V2G) over time. We model this problem

using a Markov decision process when demand follows a discrete distribution. Further, we proved

that there exists an optimal nonincreasing monotone policy when demand follows a discrete

nonincreasing distribution. Therefore, both the backward induction and monotone backward

induction algorithms can be utilized to find the optimal policy. We created two easy-to-implement

benchmark policies and empirically compared their performance to an optimal policy. Two

designed experiments were performed, from which we deduced many insights including: (i) the

dynamic benchmark policy is best; (ii) the swap price must be in line with the seasonal charging

costs; (iii) the number of batteries is an integral parameter for meeting demand; and (iv) α

needs to be appropriately set by the power company to encourage discharging and not oscillating

behavior. Future work should consider how the swap price impacts the demand for swaps in
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comparison to using at home charging or a charging station. Analysis should also be conducted

to quantify the cost of not meeting swap demand when insufficient inventory is available or

discharging using V2G is more profitable than swapping. Further, uncertainties regarding power

prices, power load, and other renewables should be incorporated into the state space of the MDP

to fully capture the load balancing potential of an EV swap station. Additionally, models should

be created that capture the true state of the batteries exchanged and the corresponding time

needed to fully charge or discharge these batteries.

Disclaimer. The views expressed in this paper are those of the authors and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or the United

States Government.
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Appendix A: Proof of Theorem 1

Herein, we provide the full details of the proof for Theorem 1. First, we outline three lemmas that are utilized

in the proof of Theorem 1.

Lemma 1. The function gt(k|st, at) =

st+at∑
j=max{a+

t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k

j=a+
t

. (20)

Proof.

gt(k|st, at) =
∑

j∈{S|j≥k}

pt(j|st, at) (21)

=
∑
j≥k

a+
t <j≤st+at

pst+at−j +

[
qst+at−j

]
j≥k

j=a+
t

(22)

=

st+at∑
j=max{a+

t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k

j=a+
t

(23)

�

Lemma 2. The following two summations are equivalent.

st+at∑
j=k

pst+at−j =

st+at−k∑
i=0

pi (24)

Proof.
st+at∑
j=k

pst+at−j = pst+at−k + pst+at−(k+1) + . . .+ pst+at−(st+at) (25)

= pst+at−k + pst+at−(k+1) + . . .+ p0 =

st+at−k∑
i=0

pi (26)

�

Lemma 3. The following two summations are equivalent.

st+at∑
j=a+

t +1

pst+at−j +

∞∑
i=st+at−a+

t

pi =

∞∑
i=0

pi (27)

Proof.
st+at∑

j=a+
t +1

pst+at−j+

∞∑
i=st+at−a+

t

pi (28)

= pst+at−(a+
t +1) + pst+at−(a+

t +2) + . . .+ pst+at−(st+at) +

∞∑
i=st−a−

t

pi (29)

= pst−a−
t −1

+ pst−a−
t −2

+ . . .+ p0 +

∞∑
i=st−a−

t

pi (30)

=

st−a−
t −1∑

i=0

pi +

∞∑
i=st−a−

t

pi =

∞∑
i=0

pi (31)
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�

Utilizing these, we prove Theorem 1: There exists optimal decision rules d∗t : st→Ast for the EV-SSMP

which are nonincreasing in st for t= 1, . . . ,N − 1 when demand Dt is governed by a nonincreasing discrete

distribution.

Proof. The claim is shown by demonstrating that the EV-SSMP exhibits the following 5 conditions

(Puterman 2005).

1. rt(st, at) is nondecreasing in st for all at ∈A′.

That rt(st, at) is nondecreasing in st for a fixed at means that for a fixed action (i.e., number of

batteries charged or discharged), the expected immediate reward will be greater when the number of

full batteries is greater. This coincides with intuition as more batteries can be swapped or discharged

when there are more full batteries available thereby leading to more reward. Consider st ≥ s̃t, using

st + at− st+1 = min{Dt, st− a−t } for any value which Dt can assume, it suffices to show that

rt(st, at)≥ rt(s̃t, at), (32)

using the expected immediate reward function

rt(st, at) =

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st− a−t }

)]
−Kta

+
t + Jta

−
t . (33)

It suffices to show that

rt(st, at)≥ rt(s̃t, at)⇔ (34)
∞∑

j=0

[
P (Dt = j)

(
ρmin{j, st− a−t }

)]
−Kta

+
t + Jta

−
t

≥
∞∑

j=0

[
P (Dt = j)

(
ρmin{j, s̃t− a−t }

)]
−Kta

+
t + Jta

−
t ⇔ (35)

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st− a−t }

)]
≥
∞∑

j=0

[
P (Dt = j)

(
ρmin{j, s̃t− a−t }

)]
. (36)

Therefore, because P (Dt = j)ρ is multiplied by both sides of the inequality in Equation (36) for all

values of j, Equation (32) can be demonstrated by proving

min{j, st− a−t } ≥min{j, s̃t− a−t }, (37)

for all possible values of j. Using a proof by cases, the three possible cases of demand Dt = j with

respect to st− a−t and s̃t− a−t are considered: (a) j ≤ s̃t− a−t , j ≤ st− a−t , (b) j ≥ s̃t− a−t , j ≤ st− a−t ,

and (c) j ≥ s̃t−a−t , j ≥ st−a−t . The case where j is greater than st−a−t and less than s̃t−a−t does not

need to be considered as it is not possible because st ≥ s̃t. In each case, Equation (37) is reduced to a

valid statement.

(a) j ≤ s̃t− a−t , j ≤ st− a−t

min{j, st− a−t } ≥min{j, s̃t− a−t }⇔ j = j (38)
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(b) j ≥ s̃t− a−t , j ≤ st− a−t

min{j, st− a−t } ≥min{j, s̃t− a−t }⇔ j ≥ s̃t− a−t (39)

(c) j ≥ s̃t− a−t , j ≥ st− a−t

min{j, st− a−t } ≥min{j, s̃t− a−t }⇔ st− a−t ≥ s̃t− a−t ⇔ st ≥ s̃t (40)

2. gt(k|st, at) is nondecreasing in st for all k ∈ S and at ∈A′.
That gt(k|st, at) is nondecreasing in st for a fixed at and k means that the probability that the number

of full batteries in the next state is greater than some threshold k is higher when the number of full

batteries in the current state is greater. Consider st ≥ s̃t, it suffices to show that

gt(k|st, at)≥ gt(k|s̃t, at)⇔ (41)∑
j∈{S|j≥k}

pt(j|st, at)≥
∑

j∈{S|j≥k}

pt(j|s̃t, at)⇔ (42)

∑
j≥k

a+
t <j≤st+at

pst+at−j +

[
qst+at−j

]
j≥k

j=a+
t

≥

∑
j≥k

a+
t <j≤s̃t+at

ps̃t+at−j +

[
qs̃t+at−j

]
j≥k

j=a+
t

⇔ (43)

st+at∑
j=max{a+

t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k

j=a+
t

≥

s̃t+at∑
j=max{a+

t +1,k}

ps̃t+at−j +

[
∞∑

i=s̃t+at−j

pi

]
j≥k

j=a+
t

. (44)

Using a proof by cases, all cases of k with respect to at are considered. For each case, Equation (44)

is reduced to a valid statement. Note that the second term of both the left hand side and right hand

side of Equation (44) is only included when both j ≥ k and j = a+t , which represents when demand

meets or exceeds supply. It is indicated in each case of the proof which of the terms are included in the

summation based on the relationship between k and at.

(a) a+t ≥ k ⇒ a+t + 1>k

The second term of each summation appears as both j ≥ k and j = a+t are satisfied. Using Lemma

3, Equation (45) is reduced to Equation (46).
st+at∑

j=a+
t +1

pst+at−j +

∞∑
i=st+at−a+

t

pi ≥
s̃t+at∑

j=a+
t +1

ps̃t+at−j +

∞∑
i=s̃t+at−a+

t

pi⇔ (45)

∞∑
i=0

pi =

∞∑
i=0

pi (46)

(b) a+t <k ⇒ a+t + 1≥ k
The second term of each summation does not appear as j = a+ will never be satisfied. Starting

from Equation (44), Lemma 2 is utilized to arrive at a known valid statement.
st+at∑
j=k

pst+at−j ≥
s̃t+at∑
j=k

ps̃t+at−j⇔ (47)
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st+at−k∑
i=0

pi ≥
s̃t+at−k∑

i=0

pi⇔ (48)

s̃t+at−k∑
i=0

pi +

st+at−k∑
i=s̃t+at−k+1

pi ≥
s̃t+at−k∑

i=0

pi⇔ (49)

st+at−k∑
i=s̃t+at−k+1

pi ≥ 0 (50)

3. rt(st, at) is a subadditive function on S×A′.

The subadditivity of rt(st, at) implies that the incremental effect on the expected total reward of

charging less batteries (or discharging more batteries) is less when the number of full batteries is greater.

Consider at ≥ ãt and st ≥ s̃t, using st +at−st+1 = min{Dt, st−a−t } for any value which Dt can assume,

it suffices to show that

rt(st, at) + rt(s̃t, ãt)≤ rt(st, ãt) + rt(s̃t, at)⇔ (51)
∞∑

j=0

[
P (Dt = j)

(
ρmin{j, st− a−t }

)]
−Kta

+
t + Jta

−
t

+

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t− ã−t }

)]
−Ktã

+
t + Jtã

−
t

≤
∞∑

j=0

[
P (Dt = j)

(
ρmin{j, st− ã−t }

)]
−Ktã

+
t + Jtã

−
t

+

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t− a−t }

)]
−Kta

+
t + Jta

−
t ⇔ (52)

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, st− a−t }

)]
+

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t− ã−t }

)]

≤
∞∑

j=0

[
P (Dt = j)

(
ρmin{j, st− ã−t }

)]
+

∞∑
j=0

[
P (Dt = j)

(
ρmin{j, s̃t− a−t }

)]
. (53)

Therefore, because P (Dt = j)ρ is multiplied by all terms in Equation (53), it suffices to show that

min{j, st− a−t }+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t− a−t }, (54)

for all values of j. Using a proof by cases, every relevant case of at and ãt, and each scenario for demand

Dt = j with respect to st − a−t , s̃t − ã−t , st − ã−t , s̃t − a−t are considered. The case where ãt ≤ 0 and

at ≥ 0 is excluded as this is not possible from the definition of subadditivity that at ≥ ãt. For each case,

Equation (54) is reduced to a valid statement.

(a) ãt ≥ 0, at ≥ 0 ⇒ ã−t = a−t = 0

min{j, st− a−t }+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t− a−t }⇔ (55)

min{j, st}+ min{j, s̃t}= min{j, st}+ min{j, s̃t} (56)

(b) ãt ≤ 0, at ≥ 0 ⇒ ã−t ≥ 0, a−t = 0

min{j, st}+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t} (57)
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Figure 11 Scenarios of demand with respect to inventory for case (b).

Every possibility for demand j with respect to st, s̃t − ã−t , st − ã−t , and s̃t is considered. Figure

11 is provided to aid the reader in visualizing the six possible scenarios. The ranges i-vi in the

diagram correspond to the following scenarios i-vi.

i. j ≤ s̃t− ã−t ⇒ j ≤ s̃t, j ≤ st− ã−t , j ≤ st

min{j, st}+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t}⇔ (58)

j+ j ≤ j+ j⇔ 2j = 2j (59)

ii. j ≥ st ⇒ j ≥ st− ã−t , j ≥ s̃t, j ≥ s̃t− ã−t

min{j, st}+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t}⇔ (60)

st + s̃t− ã−t = st− ã−t + s̃t (61)

iii. j ≥ s̃t, j ≤ st− ã−t ⇒ j ≥ s̃t− ã−t , j ≤ st

min{j, st}+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t}⇔ (62)

j+ s̃t− ã−t ≤ j+ s̃t⇔ ãt ≥ 0 (63)

iv. j ≤ s̃t, j ≤ st− ã−t , j ≥ s̃t− ã−t ⇒ j ≤ st

min{j, st}+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t}⇔ (64)

j+ s̃t− ã−t ≤ j+ j⇔ s̃t− ã−t ≤ j (65)

v. j ≥ s̃t, j ≥ st− ã−t , j ≤ st ⇒ j ≥ s̃t− ã−t

min{j, st}+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t}⇔ (66)

j+ s̃t− ã−t ≤ st− ã−t + s̃t⇔ j ≤ st (67)

vi. j ≤ s̃t, j ≥ st− ã−t ⇒ j ≥ s̃t− ã−t , j ≤ st

min{j, st}+ min{j, s̃t− ã−t } ≤min{j, st− ã−t }+ min{j, s̃t}⇔ (68)

j+ s̃t− ã−t ≤ st− ã−t + j⇔ s̃t ≤ st (69)
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Figure 12 Scenarios of demand with respect to inventory for case (c).

(c) ãt ≤ 0, at ≤ 0 ⇒ ã−t ≥ 0, a−t ≥ 0, ã−t ≥ a−t
Every possibility for demand j with respect to st − a−t , s̃t − ã−t , st − ã−t , s̃t − a−t is considered.

Figure 12 is provided to aid the reader in visualizing the six possible scenarios. The ranges i-vi in

the diagram correspond to the following scenarios i-vi.

i. j ≤ s̃t− ã−t ⇒ j ≤ s̃t− a−t , j ≤ st− ã−t , j ≤ st− a−t

min{j, st− a−t }+ min{j, s̃t− ã−t }

≤min{j, st− ã−t }+ min{j, s̃t− a−t }⇔ (70)

j+ j ≤ j+ j⇔ 2j = 2j (71)

ii. j ≥ st− a−t ⇒ j ≥ s̃t− a−t , j ≥ st− ã−t , j ≥ s̃t− ã−t

min{j, st− a−t }+ min{j, s̃t− ã−t }

≤min{j, st− ã−t }+ min{j, s̃t− a−t }⇔ (72)

st− a−t + s̃t− ã−t = st− ã−t + s̃t− a−t (73)

iii. j ≥ s̃t− a−t , j ≤ st− ã−t ⇒ j ≥ s̃t− ã−t , j ≤ st− a−t

min{j, st− a−t }+ min{j, s̃t− ã−t }

≤min{j, st− ã−t }+ min{j, s̃t− a−t }⇔ (74)

j+ s̃t− ã−t ≤ j+ s̃t− a−t ⇔ ã−t ≥ a−t (75)

iv. j ≤ s̃t− a−t , j ≤ st− ã−t , j ≥ s̃t− ã−t ⇒ j ≤ st− a−t

min{j, st− a−t }+ min{j, s̃t− ã−t }

≤min{j, st− ã−t }+ min{j, s̃t− a−t }⇔ (76)

j+ s̃t− ã−t ≤ j+ j⇔ s̃t− ã−t ≤ j (77)

v. j ≥ s̃t− a−t , j ≥ st− ã−t , j ≤ st− a−t ⇒ j ≥ s̃t− ã−t

min{j, st− a−t }+ min{j, s̃t− ã−t }

≤min{j, st− ã−t }+ min{j, s̃t− a−t }⇔ (78)

j+ s̃t− ã−t ≤ st− ã−t + s̃t− a−t ⇔ j ≤ st− a−t (79)
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vi. j ≤ s̃t− a−t , j ≥ st− ã−t ⇒ j ≥ s̃t− ã−t , j ≤ st− a−t

min{j, st− a−t }+ min{j, s̃t− ã−t }

≤min{j, st− ã−t }+ min{j, s̃t− a−t }⇔ (80)

j+ s̃t− ã−t ≤ st− ã−t + j⇔ s̃t ≤ st (81)

4. gt(k|st, at) is a subadditive function on S×A′ for all k ∈ S.

The subadditivity of gt(k|st, at) implies that the incremental effect of charging less batteries (or dis-

charging more batteries) on the probability that the system moves to a state of full batteries above

some threshold k is less when the number of full batteries is greater. Consider at ≥ ãt and st ≥ s̃t, it

suffices to show that

gt(k|st, at) + gt(k|s̃t, ãt)≤ gt(k|st, ãt) + gt(k|s̃t, at)⇔ (82)
st+at∑

j=max{a+
t +1,k}

pst+at−j +

[
∞∑

i=st+at−j

pi

]
j≥k

j=a+
t

+

s̃t+ãt∑
j=max{ã+

t +1,k}

ps̃t+ãt−j +

[
∞∑

i=s̃t+ãt−j

pi

]
j≥k

j=ã+
t

≤
st+ãt∑

j=max{ã+
t +1,k}

pst+ãt−j +

[
∞∑

i=st+ãt−j

pi

]
j≥k

j=ã+
t

+

s̃t+at∑
j=max{a+

t +1,k}

ps̃t+at−j +

[
∞∑

i=s̃t+at−j

pi

]
j≥k

j=a+
t

. (83)

Using a proof by cases, every relevant case of k with respect to at and ãt is considered. For each case,

Equation (83) is reduced to a valid statement. The function gt(k|st, at) is comprised of two terms. The

first term calculates the probability when demand never exceeds supply of batteries and the second

calculates the probability that demand equals or exceeds supply. It is indicated in each case of the proof

which of the terms are included in the summation based on the relationship between k, at, and ãt.

(a) ã+t ≥ k ⇒ a+t ≥ k, ã+t + 1>k, a+t + 1>k

For this case demand for battery swaps may exceed supply, therefore both terms of gt(k|st, at)

appear.

st+at∑
j=a+

t +1

pst+at−j +

∞∑
i=st+at−a+

t

pi +

s̃t+ãt∑
j=ã+

t +1

ps̃t+ãt−j +

∞∑
i=s̃t+ãt−ã+

t

pi

≤
st+ãt∑

j=ã+
t +1

pst+ãt−j +

∞∑
i=st+ãt−ã+

t

pi +

s̃t+at∑
j=a+

t +1

ps̃t+at−j +

∞∑
i=s̃t+at−a+

t

pi⇔ (84)

∞∑
i=0

pi +

∞∑
i=0

pi ≤
∞∑
i=0

pi +

∞∑
i=0

pi⇔ (85)

2

∞∑
i=0

pi = 2

∞∑
i=0

pi (86)
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(b) ã+t <k, a+t ≥ k ⇒ ã+t + 1≤ k, a+t + 1>k

For this case, because a+t ≥ k, the second term of g(k|st, at) does appear when action at is taken

as demand can exceed supply. However, because ã+t < k, demand can never exceed supply when

action ãt is taken.
st+at∑

j=a+
t +1

pst+at−j +

∞∑
i=st+at−a+

t

pi +

s̃t+ãt∑
j=k

ps̃t+ãt−j

≤
st+ãt∑
j=k

pst+ãt−j +

s̃t+at∑
j=a+

t +1

ps̃t+at−j +

∞∑
i=s̃t+at−a+

t

pi⇔ (87)

∞∑
i=0

pi +

s̃t+ãt−k∑
i=0

pi ≤
st+ãt−k∑

i=0

pi +

∞∑
i=0

pi⇔ (88)

s̃t+ãt−k∑
i=0

pi ≤
st+ãt−k∑

i=0

pi⇔ (89)

s̃t+ãt−k∑
i=0

pi ≤
s̃t+ãt−k∑

i=0

pi +

st+ãt−k∑
i=s̃t+ãt−k+1

pi⇔ (90)

0≤
st+ãt−k∑

i=s̃t+ãt−k+1

pi (91)

(c) a+t <k ⇒ ã+t <k, ã+t + 1≤ k, a+t + 1≤ k
For this case, demand for battery swaps never exceeds supply therefore, the second term of

gt(k|st, at) does not appear when either action at or action ãt are taken.

st+at∑
j=k

pst+at−j +

s̃t+ãt∑
j=k

ps̃t+ãt−j ≤
st+ãt∑
j=k

pst+ãt−j +

s̃t+at∑
j=k

ps̃t+at−j⇔ (92)

st+at−k∑
i=0

pi +

s̃t+ãt−k∑
i=0

pi ≤
st+ãt−k∑

i=0

pi +

s̃t+at−k∑
i=0

pi⇔ (93)

s̃t+at−k∑
i=0

pi +

st+at−k∑
i=s̃t+at−k+1

pi +

s̃t+ãt−k∑
i=0

pi

≤
s̃t+ãt−k∑

i=0

pi +

st+ãt−k∑
i=s̃t+ãt−k+1

pi +

s̃t+at−k∑
i=0

pi⇔ (94)

st+at−k∑
i=s̃t+at−k+1

pi ≤
st+ãt−k∑

i=s̃t+ãt−k+1

pi. (95)

In Equation (95) the number of terms on each side are exactly the same, however because at ≥ ãt
the start of the summation is greater on the left hand side. Therefore, Equation (95) holds when

pj = P (Dt = j) is governed by a nonincreasing discrete distribution.

5. rN(sN) is nondecreasing in sN .

Consider sN ≥ s̃N , it suffices to show that rN(sN) ≥ rN(s̃N). This expression is reduced to a known

valid statement.

rN(sN)≥ rN(s̃N)⇔ ρsN ≥ ρs̃N ⇔ sN ≥ s̃N (96)

�
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Appendix B: Full Results from the Benchmark Policies

Table 3 Benchmark policy results for Winter.
Backward Induction Stationary Benchmark Policy Dynamic Benchmark Policy

Scenario M Φ(%M) γ ρ Time (s) Time (s) Opt Gap Demand Gap Time (s) Opt Gap Demand Gap
1 104 0.42 5872 15.38 62.57 0.34 0.13 -0.01 0.34 0.13 -0.02
2 185 0.83 5359 21.54 77.02 14.11 0.11 0.00 13.95 0.14 0.00
3 88 0.48 1513 17.31 7.88 0.68 0.26 0.00 0.57 0.27 0.00
4 200 0.44 3821 12.69 51.27 11.75 0.48 -0.23 10.75 0.48 -0.23
5 158 0.58 1256 16.54 30.98 5.22 0.47 -0.01 5.67 0.50 -0.01
6 173 0.56 4077 24.62 46.9 7.95 0.11 0.00 7.55 0.13 0.00
7 123 0.62 1897 10.38 13.84 2.25 0.87 -0.42 2.67 0.88 -0.42
8 169 0.54 5615 15.00 44.41 6.97 0.19 -0.08 6.23 0.20 -0.08
9 73 0.79 1000 21.92 6.62 0.51 0.24 0.00 0.39 0.28 0.00
10 192 0.85 2667 23.85 84.32 16.31 0.22 0.00 14.79 0.26 0.00
11 162 0.27 2154 13.08 17.78 3.11 0.46 -0.13 2.32 0.46 -0.13
12 65 0.40 2795 22.69 5.17 0.21 0.07 0.03 0.2 0.06 0.01
13 119 0.50 4333 20.00 18.25 1.3 0.09 0.00 1.04 0.09 0.00
14 115 0.37 4590 10.00 9.46 0.97 1.02 -0.47 0.71 1.04 -0.49
15 96 0.87 1128 14.62 10.82 0.82 0.49 -0.14 0.73 0.53 -0.14
16 196 0.46 2410 20.77 52.97 12.07 0.26 0.00 10.35 0.28 0.00
17 146 0.38 6000 23.08 26.46 2.89 0.07 0.02 2.51 0.06 0.00
18 131 0.96 3051 13.46 26.49 3.67 0.41 -0.27 3.88 0.45 -0.27
19 177 0.94 4846 14.23 65.08 12.56 0.31 -0.18 12.56 0.34 -0.18
20 135 0.29 2538 22.31 14.73 1.64 0.13 0.00 1.36 0.14 0.00
21 54 0.73 4718 15.77 5.36 0.19 0.20 0.08 0.17 0.18 0.06
22 188 0.81 2026 12.31 61.4 14.79 0.67 -0.29 13.72 0.70 -0.29
23 154 0.90 1641 18.85 38.77 6.86 0.36 0.00 6.91 0.42 0.00
24 81 0.33 1769 10.77 4.36 0.32 0.74 -0.40 0.28 0.73 -0.40
25 138 0.98 3949 20.38 35.43 4.55 0.13 0.00 4.65 0.16 0.00
26 150 0.63 1385 23.46 29.37 4.78 0.29 0.00 4.31 0.33 0.00
27 181 0.35 4462 19.23 36.77 6.01 0.14 0.00 5.1 0.14 0.00
28 58 1.00 3308 16.92 6.1 0.26 0.17 0.09 0.24 0.14 0.02
29 142 0.67 4205 11.15 25.4 4.42 0.68 -0.39 3.86 0.69 -0.39
30 127 0.77 5487 17.69 29.55 3.11 0.12 0.03 2.85 0.11 0.00
31 100 0.75 2923 18.46 14.61 1.14 0.14 0.00 0.92 0.16 0.00
32 165 0.69 3436 18.08 62.34 7.68 0.22 0.00 7.47 0.24 0.00
33 92 0.88 5744 11.54 12.98 1.1 0.54 -0.24 1.06 0.55 -0.29
34 50 0.71 2282 11.92 3.85 0.16 0.46 -0.33 0.15 0.47 -0.37
35 108 0.65 3179 25.00 17.98 1.04 0.08 0.00 0.83 0.10 0.00
36 62 0.31 4974 19.62 5.03 0.2 0.05 0.02 0.18 0.16 0.07
37 77 0.60 5231 24.23 10.98 0.26 0.16 0.12 0.25 0.11 0.07
38 69 0.92 5103 21.15 10.52 0.23 0.17 0.12 0.22 0.14 0.09
39 85 0.52 3564 13.85 10.28 0.4 0.22 -0.15 0.24 0.21 -0.17
40 112 0.25 3692 16.15 11.95 0.38 0.11 0.00 0.35 0.13 0.02
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Table 4 Benchmark policy results for Spring.
Backward Induction Stationary Benchmark Policy Dynamic Benchmark Policy

Scenario M Φ(%M) γ ρ Time (s) Time (s) Opt Gap Demand Gap Time (s) Opt Gap Demand Gap
1 104 0.42 5872 5.51 58.32 0.49 0.11 0.05 0.83 0.07 0.04
2 185 0.83 5359 8.38 87.46 15.07 0.07 0.00 12.83 0.05 0.00
3 88 0.48 1513 6.41 9.76 0.61 0.16 0.00 0.61 0.12 0.00
4 200 0.44 3821 4.26 64.8 11.81 0.31 0.00 9.37 0.24 0.00
5 158 0.58 1256 6.05 39.51 5.49 0.32 0.00 4.49 0.27 0.00
6 173 0.56 4077 9.82 55.9 7.88 0.07 0.00 6.7 0.05 0.00
7 123 0.62 1897 3.18 18.69 2.21 0.76 -0.37 1.98 0.67 -0.37
8 169 0.54 5615 5.33 54.77 6.96 0.12 0.00 10.85 0.08 0.00
9 73 0.79 1000 8.56 8.46 0.55 0.14 0.00 0.83 0.11 0.00
10 192 0.85 2667 9.46 87.18 16.79 0.12 0.00 17.5 0.10 0.00
11 162 0.27 2154 4.44 23.66 3.29 0.33 0.00 3.71 0.28 0.00
12 65 0.40 2795 8.92 5.96 0.22 0.06 0.03 0.22 0.03 0.01
13 119 0.50 4333 7.67 21.06 0.93 0.06 0.00 1.29 0.04 0.00
14 115 0.37 4590 3.00 8.73 0.85 1.06 -0.60 0.68 0.92 -0.62
15 96 0.87 1128 5.15 14.11 0.84 0.31 0.00 0.83 0.26 0.00
16 196 0.46 2410 8.03 61.96 11.69 0.16 0.00 11.97 0.13 0.00
17 146 0.38 6000 9.10 31.09 2.96 0.06 0.02 3.05 0.03 0.01
18 131 0.96 3051 4.62 35.82 3.69 0.23 0.00 3.77 0.19 0.00
19 177 0.94 4846 4.97 81.21 12.25 0.17 0.00 14.82 0.14 0.00
20 135 0.29 2538 8.74 16.44 1.75 0.09 0.00 2.35 0.07 0.00
21 54 0.73 4718 5.69 5.99 0.18 0.18 0.11 0.26 0.12 0.08
22 188 0.81 2026 4.08 77.64 15.06 0.48 -0.01 16.03 0.41 -0.01
23 154 0.90 1641 7.13 47.9 6.78 0.22 0.00 7.08 0.18 0.00
24 81 0.33 1769 3.36 5.71 0.35 0.56 -0.21 0.34 0.45 -0.21
25 138 0.98 3949 7.85 42.05 4.57 0.07 0.00 4.34 0.06 0.00
26 150 0.63 1385 9.28 37.25 4.77 0.18 0.00 6.64 0.14 0.00
27 181 0.35 4462 7.31 43.57 6.02 0.09 0.00 6.27 0.06 0.00
28 58 1.00 3308 6.23 7.13 0.29 0.16 0.12 0.37 0.07 0.05
29 142 0.67 4205 3.54 34.85 4.27 0.41 -0.16 3.97 0.33 -0.16
30 127 0.77 5487 6.59 35.73 3.15 0.10 0.04 3.37 0.05 0.01
31 100 0.75 2923 6.95 17.49 1.03 0.08 0.00 1.14 0.06 0.00
32 165 0.69 3436 6.77 54.1 8.06 0.13 0.00 7.99 0.10 0.00
33 92 0.88 5744 3.72 16.95 1.07 0.26 0.09 1.19 0.18 0.02
34 50 0.71 2282 3.90 4.82 0.16 0.23 0.05 0.15 0.15 0.00
35 108 0.65 3179 10.00 18.95 0.96 0.05 0.00 1.15 0.03 0.00
36 62 0.31 4974 7.49 4.79 0.21 0.05 0.02 0.18 0.12 0.07
37 77 0.60 5231 9.64 10.85 0.25 0.15 0.12 0.44 0.08 0.06
38 69 0.92 5103 8.21 10.57 0.23 0.16 0.12 0.24 0.10 0.08
39 85 0.52 3564 4.79 11.48 0.28 0.14 0.03 0.27 0.08 0.00
40 112 0.25 3692 5.87 11.97 0.44 0.10 0.04 0.34 0.08 0.04
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Table 5 Benchmark policy results for Summer.
Backward Induction Stationary Benchmark Policy Dynamic Benchmark Policy

Scenario M Φ(%M) γ ρ Time (s) Time (s) Opt Gap Demand Gap Time (s) Opt Gap Demand Gap
1 104 0.42 5872 10.38 60.57 0.37 0.14 -0.03 0.35 0.11 -0.04
2 185 0.83 5359 16.54 79.45 15.1 0.08 0.00 13.54 0.07 0.00
3 88 0.48 1513 12.31 8.18 0.63 0.22 -0.03 0.52 0.18 -0.03
4 200 0.44 3821 7.69 54.13 12.15 0.49 -0.26 10.22 0.43 -0.26
5 158 0.58 1256 11.54 35.62 5.57 0.42 -0.04 5.07 0.36 -0.04
6 173 0.56 4077 19.62 50.69 7.98 0.09 0.00 7 0.07 0.00
7 123 0.62 1897 5.38 17.08 2.24 1.04 -0.33 2.17 0.95 -0.33
8 169 0.54 5615 10.00 45.74 7.48 0.19 -0.10 6.74 0.16 -0.10
9 73 0.79 1000 16.92 7.36 0.52 0.18 0.00 0.45 0.15 0.00
10 192 0.85 2667 18.85 82.94 17.26 0.16 0.00 15.01 0.13 0.00
11 162 0.27 2154 8.08 18.35 3.29 0.50 -0.15 2.34 0.44 -0.15
12 65 0.40 2795 17.69 5.02 0.21 0.07 0.02 0.2 0.03 0.01
13 119 0.50 4333 15.00 17.41 1.55 0.08 -0.02 0.93 0.05 -0.02
14 115 0.37 4590 5.00 9.31 0.77 1.44 -0.41 0.81 1.37 -0.43
15 96 0.87 1128 9.62 12.08 0.87 0.43 -0.10 0.71 0.38 -0.10
16 196 0.46 2410 15.77 57.96 11.79 0.21 0.00 9.72 0.18 0.00
17 146 0.38 6000 18.08 26.27 3.01 0.06 0.02 2.38 0.03 0.00
18 131 0.96 3051 8.46 28.91 3.73 0.39 -0.22 3.86 0.35 -0.22
19 177 0.94 4846 9.23 69.32 13.01 0.29 -0.16 12.43 0.25 -0.16
20 135 0.29 2538 17.31 13.73 1.81 0.12 0.00 1.27 0.09 0.00
21 54 0.73 4718 10.77 5.06 0.18 0.19 0.06 0.16 0.14 0.01
22 188 0.81 2026 7.31 68.47 15.07 0.66 -0.28 13.85 0.60 -0.28
23 154 0.90 1641 13.85 44.08 6.84 0.29 -0.02 7.29 0.25 -0.02
24 81 0.33 1769 5.77 4.25 0.33 0.93 -0.35 0.32 0.83 -0.35
25 138 0.98 3949 15.38 36.78 4.67 0.09 0.00 4.7 0.08 0.00
26 150 0.63 1385 18.46 32.77 5.01 0.23 0.00 4.58 0.19 0.00
27 181 0.35 4462 14.23 36.48 6.26 0.12 -0.02 5.06 0.09 -0.02
28 58 1.00 3308 11.92 5.96 0.24 0.16 0.06 0.2 0.09 -0.02
29 142 0.67 4205 6.15 27.89 4.21 0.80 -0.33 3.84 0.74 -0.33
30 127 0.77 5487 12.69 30.68 3.17 0.11 -0.02 2.85 0.07 -0.05
31 100 0.75 2923 13.46 14.82 1.02 0.11 -0.03 0.92 0.09 -0.03
32 165 0.69 3436 13.08 51.22 8.7 0.17 -0.03 7.62 0.14 -0.03
33 92 0.88 5744 6.54 11.96 1.07 0.57 -0.17 1.05 0.58 -0.24
34 50 0.71 2282 6.92 3.11 0.15 0.52 -0.25 0.14 0.49 -0.31
35 108 0.65 3179 20.00 16.1 0.91 0.06 0.00 0.74 0.05 0.00
36 62 0.31 4974 14.62 4.17 0.48 0.05 0.01 0.2 0.09 0.03
37 77 0.60 5231 19.23 9.28 0.25 0.15 0.12 0.36 0.08 0.06
38 69 0.92 5103 16.15 8.95 0.23 0.16 0.12 0.22 0.09 0.07
39 85 0.52 3564 8.85 8.52 0.28 0.24 -0.14 0.28 0.20 -0.17
40 112 0.25 3692 11.15 9.4 0.37 0.13 -0.03 0.34 0.10 -0.03
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Table 6 Benchmark policy results for Fall.
Backward Induction Stationary Benchmark Policy Dynamic Benchmark Policy

Scenario M Φ(%M) γ ρ Time (s) Time (s) Opt Gap Demand Gap Time (s) Opt Gap Demand Gap
1 104 0.42 5872 4.15 59.8 0.31 0.12 0.05 0.72 0.08 0.04
2 185 0.83 5359 6.62 78.79 13.8 0.08 0.00 13.81 0.06 0.00
3 88 0.48 1513 4.92 8.62 0.62 0.18 0.00 0.6 0.14 0.00
4 200 0.44 3821 3.08 60.82 11.03 0.38 0.00 10.65 0.30 0.00
5 158 0.58 1256 4.62 35.87 5.15 0.34 0.00 5.25 0.29 0.00
6 173 0.56 4077 7.85 50.78 8.5 0.08 0.00 6.94 0.05 0.00
7 123 0.62 1897 2.15 13.36 3.19 1.11 -0.71 2.02 0.98 -0.71
8 169 0.54 5615 4.00 48.23 6.64 0.14 0.00 6.28 0.11 0.00
9 73 0.79 1000 6.77 7.23 0.48 0.15 0.00 0.45 0.12 0.00
10 192 0.85 2667 7.54 80.56 16.02 0.14 0.00 15.71 0.11 0.00
11 162 0.27 2154 3.23 21.65 2.96 0.38 0.00 2.46 0.31 0.00
12 65 0.40 2795 7.08 5.15 0.21 0.07 0.03 0.2 0.04 0.01
13 119 0.50 4333 6.00 18.26 0.81 0.07 0.00 1.05 0.05 0.00
14 115 0.37 4590 2.00 5.12 0.87 2.23 -0.80 0.72 2.07 -0.81
15 96 0.87 1128 3.85 12.68 0.85 0.37 0.00 0.77 0.30 0.00
16 196 0.46 2410 6.31 58.1 12.52 0.17 0.00 10.29 0.13 0.00
17 146 0.38 6000 7.23 26.69 2.89 0.06 0.02 2.37 0.04 0.00
18 131 0.96 3051 3.38 31.55 3.66 0.29 0.00 3.71 0.24 0.00
19 177 0.94 4846 3.69 74.59 12.54 0.21 0.00 12.46 0.17 0.00
20 135 0.29 2538 6.92 14.81 1.73 0.09 0.00 1.23 0.07 0.00
21 54 0.73 4718 4.31 5.28 0.17 0.18 0.11 0.16 0.12 0.08
22 188 0.81 2026 2.92 71.83 15.52 0.59 -0.01 13.69 0.50 -0.01
23 154 0.90 1641 5.54 43.97 6.87 0.25 0.00 6.84 0.20 0.00
24 81 0.33 1769 2.31 3.6 0.32 0.94 -0.58 0.32 0.78 -0.58
25 138 0.98 3949 6.15 38.18 4.98 0.09 0.00 4.6 0.06 0.00
26 150 0.63 1385 7.38 33.18 4.91 0.19 0.00 4.24 0.15 0.00
27 181 0.35 4462 5.69 40.36 6.06 0.10 0.00 4.87 0.08 0.00
28 58 1.00 3308 4.77 6.25 0.28 0.16 0.12 0.28 0.08 0.05
29 142 0.67 4205 2.46 27.47 4.38 0.72 -0.45 3.91 0.60 -0.45
30 127 0.77 5487 5.08 32.26 3 0.10 0.04 2.86 0.05 0.01
31 100 0.75 2923 5.38 15.35 1.06 0.10 0.00 0.95 0.07 0.00
32 165 0.69 3436 5.23 48.88 7.97 0.15 0.00 7.31 0.12 0.00
33 92 0.88 5744 2.62 13.49 1.07 0.42 -0.08 1.02 0.34 -0.15
34 50 0.71 2282 2.77 3.9 0.15 0.34 -0.05 0.15 0.25 -0.10
35 108 0.65 3179 8.00 16.61 0.78 0.06 0.00 0.83 0.04 0.00
36 62 0.31 4974 5.85 4.29 4.89 0.05 0.02 0.32 0.12 0.06
37 77 0.60 5231 7.69 9.52 0.23 0.15 0.12 0.24 0.08 0.06
38 69 0.92 5103 6.46 9.37 0.21 0.17 0.12 0.24 0.09 0.07
39 85 0.52 3564 3.54 10.08 0.27 0.17 0.03 0.27 0.11 0.00
40 112 0.25 3692 4.46 10.7 0.34 0.11 0.04 0.35 0.09 0.04


