
Integrated Network Design and Scheduling Problems with

Parallel Identical Machines: Complexity Results and

Dispatching Rules

Sarah G. Nurre∗1 and Thomas C. Sharkey2

1Department of Operational Sciences, Air Force Institute of Technology, WPAFB,

OH 45433.
2Department of Industrial and Systems Engineering, Rensselaer Polytechnic

Institute, Troy, NY 12180.

Abstract

We consider the class of integrated network design and scheduling (INDS) problems that focus

on selecting and scheduling operations that will change the characteristics of a network, while

being specifically concerned with the performance of the network over time. Motivating appli-

cations of INDS problems include infrastructure restoration after an extreme event and building

humanitarian logistics networks. We examine INDS problems under a parallel identical machine

scheduling environment where the performance of the network is evaluated by solving classic

network optimization problems. We prove that all considered INDS problems are NP -hard. We

propose a novel heuristic dispatching rule algorithm framework that selects and schedules sets of

arcs based on their interactions in the network. These interactions are measured by examining

network optimality conditions. Computational testing of these dispatching rules on realistic data

sets representing infrastructure networks of lower Manhattan, New York demonstrates that they

arrive at near-optimal solutions in real-time.

Keywords: Network Design, Scheduling, Dispatching Rule, Complexity Results, IP Formulation,

Infrastructure Restoration, Parallel Identical Machines

∗Corresponding author, e-mail: Sarah.Nurre@afit.edu. The work of this author was supported by a Sandia
National Laboratories and Rensselaer Polytechnic Institute (RPI) Excellence in Engineering Research Fellowship.

1

1 Introduction

Integrated network design and scheduling (INDS) problems are a class of problems that model the

selection and scheduling of operations that will change the characteristics of a network. These opera-

tions could correspond to enhancing existing network components or installing new components. The

integration of these two sets of decisions, network design and scheduling, allows our models to capture

how the operations improve the performance of the network over time during their implementation.

Traditional network design problems look at selecting the desired characteristics (e.g., which com-

ponents to install) of a network. A network design is evaluated by looking at the end performance

of the network, i.e., how the network operates after the design is completed, without considering the

intermediate network performance as the design is being implemented. INDS problems specifically

consider the intermediate network performance by incorporating scheduling decisions required to im-

plement the selected design. These INDS scheduling decisions correspond to traditional scheduling

problems that seek to allocate resources over time to process a set of tasks.

INDS problems focus on the allocation of machines1 to process the set of tasks required to achieve

a selected network design. The focus of this paper will be on INDS problems in a parallel identical

machine environment. A solution to these problems involves three main decisions: selecting which

components to process to change the network, assigning the selected components to a machine, and

sequencing the assigned tasks on each machine. We consider INDS problems with objectives that

focus on the cumulative (intermediate) performance of the network over time or that focus on how

quickly a desired level of network performance can be achieved.

There are a number of real-life situations that motivate the need for models that integrate network

design and scheduling problems. We present applications in restoring a disrupted network, upgrading

an existing network, and building a new network.

Our first application arises after an extreme event, such as a hurricane, has caused large-scale

damage to an infrastructure network. Infrastructure managers must make a restoration plan in order

to repair damaged components and re-establish distribution of the services provided by the network.

Customers of the infrastructure network evaluate the success of a restoration plan by how quickly their

services are restored. Therefore, the repair of damaged components must be scheduled to create an

operational network and ensure a quick restoration of services to many customers. The infrastructure

will be providing services as it is implementing its restoration plan and, therefore, infrastructure

managers will be concerned with the level of satisfied demand in the network over time. An INDS

model can help formulate a restoration plan that allocates infrastructure work crews to process selected

repairs in the infrastructure network.

Another application area is the implementation of network upgrades in order to improve services

1Please note that while we use the term ‘machine’, in many applications, work groups, work crews, or other resources
take the role of the machines. However, for consistency with the scheduling literature, we will use the term machine
when examining the mathematics of the INDS problem.

2

provided by the network. One example of this is constructing a new smart grid design for the power

infrastructure. Researchers have looked into how to transform the electrical power grid into a smart

grid (see Farhangi [11], Momoh [25], Mahmood et al. [23], DeBlasio and Tom [9]), many of which

include installations of solar (see Mulder et al. [27]), wind (see Glinkowski et al. [13]), and other

environmentally friendly and sustainable technologies (see Clastres [7], Moslehi and Kumar [26], and

Liserre et al. [22]). For large projects like these, resources (e.g., budget) often only allow a number

of upgrades to take place during a certain time period (e.g., annually). It is, therefore, important

to determine which upgrades will be completed in each phase of the project, which can be modeled

with an INDS problem. Note that, in this application area, it is likely that all upgrades (tasks) in the

problem will be processed (i.e., the end design is fixed); however, INDS problems can help model the

order of the tasks in order to optimize the intermediate network performance. Another example of

an application of upgrading a network occurs when a company operating a supply chain chooses to

enhance existing network components, such as improving a machine or expanding inventory capacity

at a facility.

Our third application of INDS problems involves creating and building a new network, which is

often needed during humanitarian logistics activities. After an extreme event, many people do not

have access to essential items such as water, food, and shelter. To remedy this situation, humanitarian

organizations set up locations to distribute these essential items and to act as shelters. These sites

should be located in order to provide the greatest benefit to the affected community. There are limited

resources available to set up these locations; therefore, we must allocate the resources over time to a

selected subset of the potential distribution and shelter sites. It is clear that the partially completed

network will need to be operational and goods will be distributed even when all work is not fully

completed on the selected logistics network.

The objective of an INDS problem is based on two factors: (i) how the performance of the network

is evaluated and (ii) how we evaluate the scheduling decisions. The performance of the network is

often dictated by the application of the INDS problem. For example, the type of infrastructure

system being restored will dictate the most applicable mathematical model to apply to determine the

performance of the network. A power network might focus on maximizing flow at each time period

of a restoration plan, which is equivalent to maximizing met demand. An emergency network might

focus on the shortest path between residents and a hospital. We will consider network performance

metrics based on four classic network flow problems (see Ahuja et al. [2]). In terms of evaluating the

scheduling decisions, we are interested in determining the cumulative performance of the network over

time, which means our objective will include the network performance in each period. Alternatively,

we may also be interested in determining the minimum amount of time required to achieve some set

performance value (e.g., all demand is met).

INDS problems have not been widely examined, despite their important applications. The works of

Guha et al. [15], Averbakh [4], and Averbakh and Pereira [5] consider INDS problems that are focused

3

on the recovery time of each node in the network, which is defined as the first time a (demand) node

is connected to a ‘source’ (or supply) node. These works do not consider the capacity constraints

within a network, which is important when capturing the network performance in certain applications.

Further, the INDS problems considered in this paper can capture the number of recovered nodes in

the network at any point in time, so the objectives can model recovery time-based objectives. Xu et

al. [31] looks at restoring a power network after an earthquake by scheduling inspection, assessment,

and repair operations. This work, again, focuses on the recovery time of each demand node and

proposes a genetic algorithm for this problem.

There has been further research on INDS problems that is interested in the cumulative performance

of the network over time. Ang [3] provides an integer programming formulation of a model to restore

power, where the focus is on minimizing the total cost of power shed over time. Matisziw et al.

[24] provide a multicriteria integer programming formulation of an INDS problem whose network

performance is the tradeoff between the uncapacitated flow between pairs of origins and destinations

and the cost of system use over the restoration period. The number of machines in their scheduling

environment is not explicitly modeled, but instead a budget is placed on each time period that limits

the number of arcs that can be installed in each time period. Parallel to this work, Elgindy et al. [10]

has considered an INDS problem where one arc can be installed in every time period with a focus

on minimizing the total length of the shortest path over all time periods. Therefore, this problem

is a special case of problems considered in this paper. Elgindy et al. [10] provides a NP -hard proof

of this problem and approximation algorithms. Cavdaroglu et al. [6] examines an INDS problem

with a network performance that is measured as the flow through a set of interdependent networks.

They provide an integer programming formulation and a heuristic for this problem that is specifically

geared towards interdependent networks and is thus not easily generalized to other network settings.

Nurre et al. [28] looks at INDS problems that focus on maximizing the cumulative (over time) flow in

the network. They propose a dispatching rule for this INDS problem, which has set the basis for the

general framework examined in this paper. However, Nurre et al. [28] only consider a limited scope,

in both the set of instances and objectives, of computational tests for their dispatching rule.

The contributions of this work to the study of INDS problems include: (i) the examination of

12 INDS problems with different network performance metrics and scheduling objectives (which can

model many of the previous objectives considered in related work), (ii) theoretical analysis of the

complexity of INDS problems, including hardness of approximation results for some problems, (iii)

the creation of a general dispatching rule framework, that integrates concepts from the distinct fields

of network flows and scheduling, which can be customized to different INDS problems, and (iv) a

thorough set of computational tests, on realistic infrastructure networks and many different damage

scenarios, that demonstrate the robust performance of the general dispatching rule framework.

Note that other work has examined network design problems for scheduling routes and services

in the resulting network (see Lederer and Nambimadom [19], Cranic [8], Lai and Lo [18], Agarwal

4

and Ergun [1], and Guihaire and Hao [16]). These problems are fundamentally different than INDS

problems since INDS problems look at utilizing machines to schedule the processing of components

to make a selected network design operational.

We motivate the need for heuristic algorithms to solve INDS problems by first examining the

complexity of the problems. We prove that the INDS problems considered in this paper are NP -hard.

We then propose novel heuristic dispatching rule algorithms (see Pinedo [29]) that utilize network

optimality conditions (see Ahuja et al. [2]). Dispatching rules are commonly used in scheduling and

decide which task should be selected for processing on the next available machine. Contrary to

traditional scheduling problems, in an INDS problem, once a task is complete it becomes operational

in the network and, therefore, interacts with other network components to improve the performance

of the network.

Our dispatching rules focus on how a set of tasks interact within the operational network to

improve its performance. A dispatching rule framework is presented that first calls a selection routine

that selects a set of tasks to become operational in the network. A scheduling routine is then called to

schedule these selected components. The selection routine is specifically concerned with selecting a set

of tasks that optimizes the ratio of improvement in the network performance to the total processing

times of the tasks in the set. This selection routine is customized based on the specific network

performance metric and its optimality conditions (see Ahuja et al. [2]).

We test the effectiveness of our dispatching rules by determining a restoration plan for realistic

data representing damaged infrastructures in lower Manhattan. We compare this plan to the optimal

plan based on an IP formulation (see the Appendix) of the INDS problem. The results show that the

dispatching rule can arrive at near-optimal solutions very quickly and performs well over the set of

considered performance metrics and objective functions.

The paper proceeds as follows: Section 2 provides the formal definition of INDS problems, the

performance metrics, and objective functions studied in this paper; Section 3 examines the complexity

of INDS problems; Section 4 provides the INDS dispatching rule framework and customizes it for

each performance metric; Section 5 presents the results of the computational tests; and we conclude

in Section 6.

2 Problem Statement

The purpose of this section is to provide a formal problem definition of INDS problems. This includes

specifying the network characteristics, network performance metrics, objective functions, and schedul-

ing environment associated with INDS problems. We first describe the problem classes which are the

focus of this paper and then ‘frame’ previous research papers in the context of these specifications.

5

2.1 INDS Problem Classes

LetGt = (N,At, A
′
t) represent the network at time t, whereN represents the set of nodes, At represents

the set of operational arcs at time t, and A′t represents the set of non-operational arcs at time t. The

performance of the network, denoted by P (Gt), is directly impacted by the set of operational arcs,

At. The set of arcs At ∪ A′t remains constant over time. An arc (i, j) ∈ A′t can become operational

and transition to At̄, for some t̄ > t once it has been processed by a machine. The initial operational

network is made up of nodes N , operational arcs A0 at time 0, and non-operational arcs A′0 at time

0.

The set of nodes is not indexed by t because we assume all processing in the network occurs on

the arcs. This is without loss of generality since the potential to install a node in the network can

be modeled as installing an arc using standard network expansion techniques (e.g., split the node

into two nodes and an arc). Within the set of nodes N , we may have (depending on the network

performance metric) a subset of supply nodes S and demand nodes D. Each supply node i ∈ S has

an associated supply level si, and each demand node i ∈ D has an associated demand level di.

Each arc has a set of associated parameters. Arc (i, j) ∈ A′0 has an associated (constant) pro-

cessing time pij > 0, representing the length of time it needs to be assigned to a machine to become

operational. Every arc (i, j) ∈ A0 ∪ A′0 has an associated capacity uij and cost cij.

Machines must be allocated to a non-operational arc for it to become operational. We assume

m parallel identical machines in a non-preemptive environment, commonly denoted Pm. Parallel

identical machines means that all machines can complete arc (i, j) ∈ A′0 in pij time periods. In terms

of our motivating applications, the differences between the processing times of different machines

would tend to be negligible compared to the scale of the processing times. We do note that our

proposed approaches could be potentially modified to handle situations in which the processing times

are machine dependent, which we discuss in Section 6. The non-preemptive environment signifies

that once a machine starts to work on arc (i, j) ∈ A′0 it must continue to work on arc (i, j) for pij

consecutive time periods to complete arc (i, j). Further note that in a Pm setting, each machine can

be working on up to one task at any point in time. In a traditional scheduling environment, jobs tend

to arrive at machines. However, for INDS problems a machine might need to relocate to a specific

portion of the network in order to process its next task. Our models do not specifically consider this

routing/relocation time since for our motivating applications this time is typically on a much smaller

scale than the processing times associated with the arcs and is, therefore, negligible.

We consider two objectives: the Cumulative and the Makespan-Threshold (which we denote as

Cmax-Threshold) objectives. The Cumulative objective examines a set time horizon T and optimizes

the cumulative weighted network performance over time,
∑T

t=1 wtP (Gt), where wt is a weight associ-

ated with each time period. The term ‘optimize’ can mean either minimize or maximize. The Cmax-

Threshold objective considers a desired performance value P and minimizes the time (or makespan)

needed to reach or exceed this threshold performance value, i.e., min T̄ such that P (GT̄) ≥ P for

6

maximization problems (P (GT̄) ≤ P for minimization problems).

The performance P (Gt) of the network at each time period is influenced by the set of operational

components at time t. Hence, as more components become operational the performance of the network

will improve. The manner in which we evaluate the performance will be based on four core network

flow problems (see Ahuja et al. [2]). The performance metrics are as follows:

1. Maximum Flow (MF): maximize the flow from a supply node to a demand node while ad-

hering to arc capacities and flow balance constraints. This includes, through standard network

expansion techniques, problems with multiple supply nodes and/or demand nodes.

2. Minimum Cost Flow (MCF): minimize the cost of flow that satisfies demand at a set of demand

nodes from a set of supply nodes while adhering to arc capacities and flow balance constraints.

3. Shortest Path

• Single-source, single-destination (SP): minimize the length of a path from a single source

to a single destination. This includes, through standard network expansion techniques,

problems where we are interested in finding the shortest path length from one of a set of

source nodes to one of a set of destination nodes.

• Sum of Shortest Path Lengths to Multiple Destinations (
∑
SP): minimize the sum of

shortest path lengths from a single source to multiple destinations. This can also model

problems where we are interested in summing the shortest path length from one of a set

of multiple source nodes to each of the multiple destinations.

• Shortest Path Centering amongst Multiple Destinations (SPC): minimize the maximum

length of a shortest path from a source to one of a set of multiple destinations. In other

words, the source node is best ‘centered’ amongst the destination nodes.2 This can also

capture problems where we are interested in minimizing the maximum length of a shortest

path from some source node (across a set of potential sources) to some destination node

(across a set of potential destinations).

4. Minimum Spanning Tree (MST): minimize the cost of a tree that spans all nodes.

These 6 performance metrics in combination with 2 objective functions results in 12 total problems

considered in this work. For ease of notation we utilize Graham’s triplet notation for scheduling prob-

lems (see Graham [14]) and present the problems in α | β | γ format where α represents the machine

environment, β represents special processing characteristics (performance metric) or constraints, and

γ represents the objective function. We consider the following problems in this paper:

2This performance metric is similar to the p-center problem that seeks to locate p facilities to minimize the maximum
distance from each demand node to its closest facility. Note though, our INDS problems can model both constructing
nodes and arcs in the network, where the number of arcs and nodes constructed is determined by specifics of the INDS
problem objective, unlike the known number of p facilities.

7

• Pm|MF |Cumulative

• Pm|MCF |Cumulative

• Pm|SP |Cumulative

• Pm|
∑
SP |Cumulative

• Pm|SPC|Cumulative

• Pm|MST |Cumulative

• Pm|MF |Cmax − Threshold

• Pm|MCF |Cmax − Threshold

• Pm|SP |Cmax − Threshold

• Pm|
∑
SP |Cmax − Threshold

• Pm|SPC|Cmax − Threshold

• Pm|MST |Cmax − Threshold

2.2 Related Literature: Formal Problem Definitions and Approaches

The purpose of this section is to provide an overview, in the context of INDS problems, of previous

related research. In particular, we highlight, for each related research paper, the type of INDS

problem studied by discussing its network performance metrics, objective functions, and scheduling

environments, as well as the approaches applied to the problem.

Many previous papers related to our work (Guha et al. [15], Xu et al. [31], Averbakh [4], and

Averbakh and Pereira [5]) have focused on objectives related to the recovery time of a node, which

is defined as the first time a node is connected to a source node (e.g., there is a path from the source

node to that particular node). In particular, Guha et al. [15] and Xu et al. [31] focus on total weighted

recovery time for a set of demand nodes. Averbakh [4] and Averbakh and Pereira [5] focus on the

total recovery time (all nodes have weight of 1) of all nodes in a network. The recovery time of a

node can be captured by classes of INDS problems, which we consider, namely, the INDS problem

with the minimum cost flow performance metric3 with a cumulative objective function. In particular,

for the minimum cost flow performance metric, we set the supply of the source node to be equal to

one less than the number of nodes in the network and every other node has a demand equal to one.

We then consider all ‘original’ arcs in the recovery time problem (which includes both arcs in the

network and those that can be constructed) to have zero cost and unlimited capacity. We then place

‘dummy’ arcs in the network from the source node to every other node with a capacity equal to 1

and a cost equal to 1. The minimum cost flow at time t in this modified network then provides the

number of unconnected nodes in the original network since, if a node is connected to the source, a

zero cost path exists in the modified network. Note that node i will ‘impact’ the objective function

in every time period until its recovery time and, therefore, minimizing the total recovery times of the

nodes is equivalent to the INDS problem in the modified network. Note, if we are interested in the

weighted total recovery time (we multiply the recovery time of node i by some weight), we can set

3For recovery time objectives where all nodes have the same weight, we could also model the problem with a
maximum flow performance metric by maximizing the flow from the source node to all other nodes where each node
can absorb at most one unit of flow.

8

Paper Scheduling Environment Network Performance Metric and Objective Successful Approaches/Results
Other Considerations

Guha et al. [15] pj = 1, Budget constraints Weighted Recovery Time Cumulative IP Formulation
in each time period LP Rounding Heuristic

Ang [3] Rm for m = 1, 2, 3 Cost of Unmet Demand Cumulative IP Formulation
Xu et al. [31] Fm Average Recovery Time Cumulative IP Formulation

Cmax-Threshold Genetic Algorithm
Matisziw et al. [24] pj = 1, Budget constraints Flow between Origin/Destination Pairs Multi-objective: Multicriteria IP Formulation

in each time period Overall System Cost Cumulative and Cost
Averbakh [4] Qm Recovery Time of Nodes in Path Network Cumulative NP -hard Result

Cmax-Threshold Recursive Heuristic Algorithms
Averbakh and Pereira [5] m = 1 Recovery Time of Nodes Cumulative NP -hard Result, IP Formulation,

Branch+Bound, Network-based Heuristic
Cavdaroglu et al. [6] Pm for m = 1, 2, 3 Unmet Demand in Interdependent Cumulative IP Formulation

Layered Network Network Design Heuristic
Nurre et al. [28] Pm for m = 1, 2, 3 Maximum Flow Cumulative IP Formulation

Dispatching Rule
Elgindy et al. [10] m = 1, pj = 1 Shortest Path Cumulative NP -hard Result

Network-based Greedy Approach
This Paper Pm for m = 1, 2, 3 Maximum Flow, Minimum Cost Flow Cumulative NP -hard Results

Shortest Path, Minimum Spanning Tree Cmax-Threshold Dispatching Rules
IP Formulations

Table 1: Summary of related research on INDS problems.

the cost of the dummy arc from the source node to this node equal to its weight.

Table 1 provides an overview of the research related to INDS problems. This paper provides

a rigorous classification of the complexity (e.g., ordinarily or strongly NP-hard, inapproximability

results) of a variety of classes of INDS problems (see Section 3). It is the first paper to show that

certain classes of INDS problems cannot be approximated within a constant factor unless NP ⊂
TIME (nO(log logn)). It builds upon the work of Nurre et al. [28] by showing that integrating concepts

from the area of network flows (in particular, optimality conditions of network performance metrics)

and the area of scheduling (in particular, dispatching rules) can be used to create real-time heuristic

algorithms that provide near-optimal solutions. It accomplishes this by looking at three new network

performance metrics (minimum cost flow, shortest path, and minimum spanning tree) and develops

dispatching rules based on their associated optimality conditions (negative cycles, distance labeling,

and path optimality conditions). These integrated network design and scheduling approaches are

distinct from heuristic algorithms that tend to separate these two sets of decisions, like those in

Averbakh and Pereira [5] (which finds the minimum spanning tree (MST) of processing times in the

network and then constructs the arcs in this MST) and Elgindy et al. [10] (which finds the shortest

possible path in the network and constructs this path). A rigorous set of tests across these three

performance metrics and the maximum flow metric demonstrate the robustness of these dispatching

rules for both the Cumulative and Cmax-Threshold objectives.

The network performance metrics, the scheduling environment, and the objectives are more general

than the models considered by Averbakh and Pereira [5], Nurre et al. [28], and Elgindy et al. [10].

For the work of Matisziw et al. [24], we provide an alternative network performance metric to capture

their motivating application. The motivation of their work regards telecommunications infrastructures

and are, therefore, focused on examining a measure of connectivity between pairs of nodes. They

capture this connectivity by maximizing the flow between origin/destination pairs in the network.

9

An alternative measure for a telecommunications network would be to minimize the costs of the

operational arcs used to connect the nodes in the network, e.g., solve a minimum spanning tree

problem over the network. Therefore, we provide analysis of an alternative class of INDS problems

for the motivating application of Matisziw et al. [24]. This paper thus advances the literature in this

emerging area of network design and scheduling.

3 Complexity Results

We now examine the complexity of these INDS problems, proving that they are all at least NP -hard.

Table 2 provides an overview of the complexity results, showing whether each problem is ordinarily

or strongly NP -hard along with a potential hardness of approximation classification. Most of these

proofs use reductions that lead to the single-machine environment (i.e., m = 1) and, therefore, imply

that the complexity results extend to any number m of machines.

Problem NP -hard
Ordinarily Strongly Strongly

No Approximation within ln |N |
Pm|MF |Cumulative Theorem 1
Pm|MF |Cmax − Threshold Theorems 1, Corollary 5
Pm|MCF |Cumulative Theorem 3
Pm|MCF |Cmax − Threshold Theorem 3, Corollary 5
Pm|SP |Cumulative Elgindy et al. [10]
Pm|SP |Cmax − Threshold Theorem 6
Pm|

∑
SP |Cumulative Elgindy et al. [10]

Pm|
∑
SP |Cmax − Threshold Theorem 4, Corollary 5

Pm|SPC|Cumulative Elgindy et al. [10]
Pm|SPC|Cmax − Threshold Theorem 4, Corollary 5
Pm|MST |Cumulative Theorem 7
Pm|MST |Cmax − Threshold Theorem 7

Table 2: Summary of the NP -hard results for the twelve INDS problems considered.

3.1 Maximum Flow INDS Complexity

Theorem 1. 1|MF |Cmax − Threshold and 1|MF |Cumulative are strongly NP-hard.

Proof. We reduce the strongly NP -hard problem Set Cover (see Karp [17]) to an instance of an INDS

problem. The Set Cover problem has a finite family of finite sets a1, . . . , ak and a set of elements

e1, . . . , en. Each element ei belongs to one or more set, such that ∪aj = {e1, . . . , en}. The Set Cover

problem seeks to select a subfamily {bh} ⊆ {aj} of minimum size such that ∪bh = {e1, . . . , en}. In

other words {bh} ‘covers’ every element ei, where ei appears in at least one of the selected sets bh.

10

A network representation of an INDS problem (see Figure 1) can be created by representing each

set aj and each element ei as nodes. The operational arc (aj, ei) with a capacity value of 1 and

processing time of 0 is included if ei ∈ aj. We create a super source S̄ and non-operational arcs

(S̄, aj) with capacities equal to |aj| and processing times equal to 1 for all sets. We also create a super

sink node S ′ and operational arcs (ei, S
′), with capacities equal to 1 and processing times equal to

0. Using this representation, we define the desired threshold performance value to be n, which can

only be achieved by sending a unit of flow through each node ei. In the INDS problem, selecting

to install an arc (S̄, aj) (requiring one unit of time) corresponds to selecting set aj to be a part of

the subfamily {bh} in the Set Cover problem. The objective function value of this INDS problem

represents the minimum size of the subfamily {bh} (i.e., the minimum number of sets) needed to

cover all elements. The hardness for the Cumulative objective results from observing that if we define

w1 = w2 = · · · = wT−1 = 0 and wT = 1; solving this problem then answers the question of whether

we can achieve a maximum flow of n in T time periods (or, equivalently, the existence of a cover with

T sets). In other words, this instance of 1|MF |Cumulative is the decision version of the problem

1|MF |Cmax − Threshold.

Figure 1: Graphical representation of a flow-based INDS network representing the Set Cover problem
used in the proofs of Theorems 1 and 3.

11

A shortcoming of the proof that 1|MF |Cumulative is NP -hard is that it focuses on the special

case where only the last period has a positive weight. It would not be difficult to alter the reduction

so that all time periods have positive weights and the last time period has a much larger one, so

the driving factor will still be the flow in time period T . Our next proof focuses on the Cumulative

problem where all weights are equal and there are two machines.

Theorem 2. P2|MF |Cumulative where all weights are equal, i.e., w1 = w2 = · · · = wT = 1, is

strongly NP-hard.

Proof. We will reduce the Set Cover problem to an instance of this INDS problem with a network

very similar to that presented in the proof of Theorem 1. The main exception is that we will add in

a new sink node S ′′ and a non-operational arc (S ′, S ′′) with a processing time of T and a capacity of

n. We are then interested in maximizing the flow from S̄ to S ′′. This means that it is not possible to

achieve a positive flow in the network until time T since one machine must process arc (S ′, S ′′). The

second machine can process up to T arcs of the form (S̄, aj). This implies that the objective function

value of this problem is equal to the maximum number of elements that can be covered with T sets

and the problem, therefore, provides an answer to the Set Cover problem.

3.2 Minimum Cost Flow INDS Complexity

Theorem 3. 1|MCF |Cumulative, 1|MCF |Cmax−Threshold, and P2|MCF |Cumulative with equal

weights are strongly NP-hard.

Proof. These proofs follow almost as a direct result of Theorems 1 and 2, respectively. This is because

we can transform the maximum flow performance metric to a minimum cost flow performance metric

by adding an arc from S ′ to S̄ (or S ′′ to S̄) with a cost of −1 and a large capacity. All other arcs will

have a cost of zero. Therefore, the minimum cost flow value will equal the negative of the maximum

flow value from S̄ to S ′ (S ′′).

3.3 Shortest Path INDS Complexity

In this section, we focus on the complexity of INDS problems with the three shortest path perfor-

mance metrics. Parallel to this work, Elgindy et al. [10] have examined the incremental network

design problem with a shortest path performance metric, which is equivalent to the INDS problem

1|SP |Cumulative where all arcs have a processing time of 1. In this technical report, they show that

this problem is strongly NP -hard. This implies that all our shortest path metrics with a Cumulative

objective are NP -hard. The results in this section, therefore, focus on the Cmax-Threshold objective.

Theorem 4. 1|
∑
SP |Cmax − Threshold and 1|SPC|Cmax − Threshold are strongly NP-hard.

12

Proof. For this proof, we again reduce the known strongly NP -hard problem Set Cover to an instance

of an INDS problem. The reduction and the network representation of the INDS problem (see Figure

2) is quite similar to the one presented in the proof of Theorem 1. The node set is the same with the

exception of removing the sink node S ′. The arc set is the same with the addition of operational arcs

(S̄, ei) with a length of one. Every other arc in the network has a length of zero. This means that

there is a zero-length path from S̄ to element node ei only if we have constructed an arc to a set node

that contains element ei. Therefore, viewing the set of element nodes as the set of destination nodes,

we set the threshold to be zero. This means that the objective function value of this problem is equal

to the minimum number of sets required to cover all elements.

S

a1

ak

!

a2
!

.!

.!

.!

e1

e2
!

en
!

.!

.!

.!

.!

.!

.!

.!

.!

.!

(cij, pij)

Figure 2: Graphical representation of a path-based INDS network representing the Set Cover problem
used in the proof of Theorem 4.

Corollary 5. 1|MF |Cmax−Threshold, 1|MCF |Cmax−Threshold, 1|
∑
SP |Cmax−Threshold, and

1|SPC|Cmax − Threshold cannot be approximated to within a factor of lnn unless NP ⊂ TIME

(nO(log logn)), where n = |N | represents the number of nodes in the network.

Proof. Feige [12] showed that the Set Cover problem has an approximation threshold, unless NP

⊂ TIME (nO(log logn)), of lnn when k < n, where k is the number of sets and n is the number of

elements. Theorems 1, 3, and 4 are all proved to be NP -hard through a reduction from the Set Cover

problem. More importantly for this proof, the objective of a feasible solution to these Cmax-Threshold

problems provides the number of sets required to produce a cover. This means that any approximation

algorithm for 1|MF |Cmax − Threshold, 1|MCF |Cmax − Threshold, 1|
∑
SP |Cmax − Threshold, and

1|SPC|Cmax−Threshold also is an approximation algorithm for the Set Cover problem. This proves

our desired result.

Theorem 6. 1|SP |Cmax − Threshold is NP-hard.

13

0 1 n

(V, 0) (V, 0) (V, 0) (V, 0)

(V-a1, a1) (V-a2, a2) (V-an-1, an-1) (V-an, an)

(cij, pij)

n-1

Figure 3: Graphical representation of a path-based and tree-based INDS network representing the
Partition problem used in the proofs of Theorems 6 and 7.

Proof. We reduce the known NP -hard problem Partition to an instance of an INDS problem, visually

presented in Figure 3. The Partition problem has a set of elements a1, . . . , an. We seek to find a

subset S of these elements such that
∑

ai∈S ai =
∑n

i=1
ai
2

. A network representation of an INDS

problem can be created by representing each of the n elements ai in the Partition problem by a pair

of parallel directed arcs. Specifically, the network has n + 1 nodes and 2n arcs. The pair of parallel

arcs representing each element ai connects nodes i− 1 and i, where one arc in the pair is operational

and the other is non-operational. All operational arcs have a cost equal to V , a large scalar value,

and a processing time of 0. Each non-operational arc has a cost equal to V −ai and a processing time

of ai, where ai is the element this arc represents.

In this network, we are concerned with the shortest path length between node 0 and node n with

a desired performance value of nV −
∑n

i=1
ai
2

. Note that the reduction in the shortest path length for

processing the non-operational arc (i−1, i) is precisely the processing time of the arc. If the objective

function value equals
∑n

i=1
ai
2

then we know a partition exists because a reduction of
∑n

i=1
ai
2

has been

achieved in exactly
∑n

i=1
ai
2

time. The arcs selected for installation in the INDS problem correspond

to the elements in S in the partition problem.

3.4 Minimum Spanning Tree INDS Complexity

Theorem 7. 1|MST |Cmax − Threshold and 1|MST |Cumulative are NP-hard.

Proof. This proof that 1|MST |Cmax − Threshold is NP -hard is quite similar to that of Theorem 6

with the exception that we have undirected arcs in the network from Figure 3. The hardness for the

Cumulative objective results from observing that if we set w1 = w2 = · · · = wT−1 = 0 and wT = 1,

then solving this problem answers the question of whether we can achieve a network performance of

nV −
∑n

i=1
ai
2

in the MST in T time. In other words, this Cumulative problem is the decision version

of 1|MST |Cmax − Threshold.

14

4 Dispatching Rules

Dispatching rules are a common heuristic approach for scheduling problems (see Pinedo [29]) that

selects the next task to be processed by an available machine by examining the characteristics of

the set of unprocessed tasks. These rules can be applied in real-time and often provide near-optimal

solutions to scheduling problems. Therefore, the focus of this section is on a framework for creating

dispatching rules for INDS problems. Dispatching rules are only one potential solution approach for

these INDS problems; for example, integer programming formulations of our INDS problems can be

found in the Appendix.

The success of a dispatching rule for a scheduling problem often relies on its ability to approximate

the impact of completing a task on the objective of the problem. Dispatching rules that focus on

scheduling the next task are often successful for traditional scheduling problems since once a task

is processed by a machine, it impacts the objective function and then essentially leaves the schedul-

ing system. INDS problems are unique in the field of scheduling since once an arc is processed and

becomes operational, it interacts with other operational arcs in the network to improve its perfor-

mance. For example, a newly operational arc can interact with other operational arcs in the network

to allow additional flow to reach a sink node from a source node. In other words, in the problem

Pm|MF |Cumulative, the newly operational arc can help form an augmenting path with other opera-

tional arcs in the network to deliver more flow through the network. These interactions (e.g., opening

up new augmenting paths in a maximum flow network) will ultimately improve the performance of

the network and, therefore, our dispatching rule framework will focus on understanding these inter-

actions. In particular, our framework will focus on selecting the next set of arcs to be processed by

the machines based on how they interact with each other and other arcs already in the operational

network. For example, the dispatching rules for Pm|MF |Cumulative and Pm|MF |Cmax−Threshold
will select sets of arcs that build new augmenting paths in the network. These selected arcs will then

be scheduled on the machines prior to determining the next set of arcs.

The general dispatching rule framework is presented in Algorithm 1 and can be applied to any

INDS problem, including ones that are not considered in this paper (e.g., network performance is

measured through solving a multi-commodity flow problem or a problem has a different machine

scheduling environment). The inputs for this framework are: (i) the network performance metric, (ii)

the objective function, (iii) the network, and (iv) the scheduling environment. The dispatching rule

then alternates between a selection routine that selects the next set of arcs to be scheduled and the

scheduling routine that schedules the set of selected arcs, until a stopping criterion is met.

We now discuss the selection and scheduling routines in more detail. The selection routine depends

on both how we measure the performance of the network and how we measure the impact of selected

arcs on the machines. For the INDS problems considered in this paper, these considerations can be

4for a maximization problem, P (Gt) ≤ P for a minimization problem

15

Algorithm 1 Integrated Network Design and Scheduling Problem Dispatching Rule Framework

1: Input: Performance metric and objective function
2: Input: Network: G0 with associated sets of operational arcs A0 and non-operational arcs A′0
3: Input: Resources: m parallel identical machines and objective function stopping criterion (for

example, time horizon T or desired performance value P)
4: Set time t to 0
5: Calculate current performance of network and set to P (Gt)
6: while objective function stopping criterion not met (for example, t < T or (P (Gt) ≥ P)4) do
7: Select set of arcs Āt ⊆ A′t to become operational = Selection routine with input: Gt, performance

metric
8: Update resources (time t) and network Gt = Scheduling routine with input: Āt
9: Calculate current performance of the network P (Gt)

10: end while
11: Calculate and return objective function value

captured by answering four questions associated with the performance metric. The scheduling routine

is customizable too; we present a scheduling routine that attempts to minimize the ‘makespan’ of

completing the selected arcs. The remainder of this section is then dedicated to discussing how we

customize the selection routine to each network performance metric.

Selection From a greedy perspective, a set of arcs that greatly improve the performance of the

network while requiring little processing on the set of machines would be ideal to be selected. In

other words, we are interested in selecting (for a maximization problem) the set of arcs that optimizes

max
Āt⊆A′

t

∣∣P (Nt, At ∪ Āt, A′t\Āt)− P (Gt)
∣∣

R(Āt)
(1)

where R(Āt) measures the machine (resource) requirements to process arcs in Āt. For example, R(Āt)

could measure the makespan of completing this set of arcs on the machines or, for parallel identical

machines, could simply measure the total processing time of the arcs. For a set of arcs Āt, the ratio

from (1) essentially provides the network performance improvement per-unit resource consumption.

The problem to determine the set of arcs that maximizes (1) is a combinatorial optimization problem

with a fractional objective function and can, therefore, be quite difficult to solve to optimality. For our

proposed selection routines, we will solve an approximation of (1) where we estimate the improvement

in the network as measured through the optimality conditions of the network performance. The

machine (resource) requirements (i.e., the denominator in (1)) will be measured as the total processing

time of the arcs in the set, since this provides a good approximation of the makespan requirements

for this set.

From a scheduling perspective, selecting the set of arcs that maximizes, or nearly maximizes, (1)

is a generalization of the weighted shortest processing time (WSPT) rule. The WSPT rule calculates

a priority ranking for each task j based on its weight wj and processing time pj. The task that is

16

selected for processing next is the one that maximizes its ratio of weight to processing time,
wj

pj
. This

rule is often applied to a parallel machine environment where we seek to minimize the total weighted

completion time. In order to provide this generalization of the WSPT rule for each performance

metric, we will focus on a series of questions: (i) What are the ‘tasks’?, (ii) What are the weights

of ‘tasks’?, (iii) What are the processing times of ‘tasks’?, and (iv) How do we find the ‘task’ that

maximizes (minimizes)
wj

pj
? The answers to these questions will be based on the network optimality

conditions of the performance metric, e.g., the augmenting path optimality conditions will help answer

these questions for the maximum flow objective.

Scheduling Once the selection routine selects a set of arcs to be scheduled and become operational,

they are fed into the scheduling routine. The scheduling routine determines how the machines in the

problem will process this set of selected arcs. This routine does not depend on the specific INDS

problem and should, typically, focus on scheduling the selected arcs so they are completed as quickly

as possible. For our INDS problems, we will implement the longest processing time (LPT) rule to

schedule the selected arcs. The arcs within the selected set are ordered from longest to shortest

processing time and added to a queue. When a machine becomes available, the next arc in the queue

is assigned and time is allocated for its processing. The LPT rule was chosen because it often performs

well when we want to complete the selected arcs as quickly as possible (see Pinedo [29]).

4.1 Maximum Flow INDS Dispatching Rule

The idea behind the Maximum Flow INDS Dispatching Rule was presented in Nurre et al. [28], but

we include an overview of it here since it provides an intuitive motivation for the selection routine.

This rule relies on the augmenting path optimality conditions: the flow in a network is maximum if

and only if there does not exist an augmenting path from the source to the sink with residual capacity

greater than 0 (see Ahuja et al. [2]). This means that we need to construct an augmenting path in

the operational network to increase the flow in it and, therefore, we will view augmenting paths with

at least one non-operational arc as a ‘task’ in the dispatching rule. The weight of the task is the

amount of benefit we receive from processing it or, equivalently, the improvement in the performance

of the network. Therefore, the weight of a task (or augmenting path) P will be the amount of flow it

can carry, which is equal to the minimum residual capacity of arcs in it, min(i,j)∈P rij. The processing

time of the task will then be equal to the sum of the processing times of the non-operational arcs in

it (i.e., we set the processing times of all operational5 arcs to zero).

In order to finish customizing the selection routine to create the dispatching rule, we must provide

a method to determine the task that maximizes the weight to processing time ratio. In other words,

we need to find the augmenting path P ∗ that optimizes

5Note that we view all arcs that have already been selected in previous iterations of the selection routine as opera-
tional, even though they may not yet be completed.

17

max
P∈Φ

min
(i,j)∈P

rij∑
(i,j)∈P

pij
, (2)

where Φ is the set of all augmenting paths in the residual network (Nt, At ∪ At′) with at least one

non-operational arc. Nurre et al. [28] propose a combinatorial algorithm for (2) using the following

observation: Assume that we know the weight of the optimal augmenting path (equivalently, its

residual capacity) that maximizes (2). The shortest processing time path in the network that only

contains arcs whose residual capacity is greater than or equal to the weight of the optimal augmenting

path is the optimal solution to (2). This shortest processing time path is by definition an augmenting

path, as only arcs with a residual capacity greater than or equal to the optimal weight are considered

for inclusion in the shortest path. The algorithm to solve (2) then iterates through all possible values

of the numerator, which is equal to the number of distinct residual capacities in the network. For each

of these distinct residual capacities, the shortest processing time path in the network with only arcs

whose residual capacity exceeds the current threshold is determined and provides a candidate solution

to (2). Therefore, we can provide the next ‘task’ by solving O(|At ∪ A′t|) shortest path problems.

Table 3 gives a summary of the answers to the four questions needed to customize the selection

routine for the Maximum Flow performance metric. Algorithm 2 gives the step by step process for

the selection routine at time t, which utilizes the answers from Table 3. The answer to Question (i)

is used in line 3 to determine the specific set of arcs. The answers to Questions (ii) and (iii) are used

in lines 10 and 11, respectively, to appropriately calculate the weight and processing time of a task.

The answer to Question (iv) is used in line 9, which dictates which subproblem to solve (shortest

path) on the altered network. The iterative algorithm is shown in lines 7 through 16, which alters

the network and keeps track of the best ratio. The selection routine appearing in Algorithm 2 can be

customized to the other performance metrics by appropriately modifying these lines. The Maximum

Flow INDS Dispatching rule is created by calling the selection routine, Algorithm 2, in the dispatching

rule framework provided in Algorithm 1.

Customized Selection Routine for Maximum Flow INDS Problems
(i) Tasks = augmenting paths P
(ii) Weights = minimum residual capacity of augmenting path P
(iii) Processing time =

∑
(i,j)∈P∩A′

t
pij

(iv) Task maximizes ratio
wj

pj
= Iterative algorithm using Shortest Path calculations

Table 3: Summary of the answers needed to customize the Maximum Flow Selection Routine

In the practical implementation of Algorithm 2, we can improve the run time by making some

observations. Let P be a shortest path found in the altered network corresponding to residual capacity

value rij. If the minimum residual capacity value of P is rkl, where rkl > rij, then we know that P will

18

Algorithm 2 Maximum Flow Selection Routine at time t

1: Input: Network: Gt with associated sets of operational arcs At and non-operational arcs A′t
2: Set Best Ratio = 0
3: Set best set of arcs (augmenting path) P ∗ = null
4: Solve for the performance of the network P (Gt) (maximum flow) and resulting residual network

with residual capacity values rij
5: Put the residual capacities of all arcs (i, j) ∈ At ∪ A′t or (j, i) : (i, j) ∈ At ∪ A′t in array R
6: Sort R in non-decreasing order and remove duplicate entries
7: for ` = 1, . . . , |R| do
8: Alter Gt where arc (i, j) ∈ At ∪ A′t or (j, i) : (i, j) ∈ At ∪ A′t are deleted if rij < R[`]
9: Solve for the shortest path P̄ from source S̄ to sink S ′ in the updated network Gt

10: Calculate the weight of the path wP̄ = min
(i,j)∈P̄

rij

11: Calculate the processing time of the path pP̄ =
∑

(i,j)∈P̄

pij

12: if Best Ratio < wP̄

pP̄
then

13: Set Best Ratio = wP̄

pP̄

14: Set P ∗ = P̄
15: end if
16: end for
17: Return best set of arcs P ∗

also be the shortest path in the altered network for all residual capacity values in the range [rij, rkl].

This means that we can skip ahead to residual capacity values greater than rkl. Also, if we cannot

find a path from the source node to the sink node in the altered network corresponding to residual

capacity value rij, then we can break from the for loop on line 7, since no path will be found for all

residual capacity values greater than rij.

4.2 Minimum Cost Flow INDS Dispatching Rule

We customize the selection routine for the Minimum Cost Flow performance metric by looking at the

negative cycle optimality conditions (see Ahuja et al. [2]), which state that the flow in a network is

minimum if and only if there does not exist a negative cost directed cycle in the residual network.

Therefore, we view sets of residual arcs that form a negative directed cycle C as the tasks. The weight

of a task equals the minimum residual capacity of C multiplied by the cost of the cycle,
∑

(i,j)∈C cij,

which provides the improvement in the objective function by pushing flow through this negative cycle.

The processing time of a task equals the sum of the processing times of non-operational arcs within

the cycle. In order to determine the tasks that minimize the weight to processing time ratio, we need

to find the cycle C∗ that optimizes

19

min
C∈Γ

(min
(i,j)∈C

rij)
∑

(i,j)∈C

cij∑
(i,j)∈C∩A′

t

pij
, (3)

where Γ is the set of all negative cycles in the residual network (Nt, At ∪ At′) with at least one non-

operational arc. Note that, because the minimum cost flow performance metric is a minimization

problem, we appropriately focus on minimizing the weight to processing time ratio.

We use a similar observation as the one presented for the maximum flow INDS dispatching rule

to find the task that minimizes (3): If we know the minimum residual capacity value of the cycle that

minimizes (3) and alter the network to include only residual arcs at or above this residual capacity

value, then the cycle that minimizes the cost to time ratio problem (see Ahuja et al. [2]) also minimizes

(3). We do not know the optimal minimum residual capacity value, and therefore must solve at most

O(|At ∪ A′t|) minimum cost to time problems to find the cycle that minimizes (3).

Table 4 summarizes the answers to the four customizable features of the selection routine, catered

to the minimum cost flow performance metric. As we saw with the maximum flow performance metric,

the answers to these questions directly influence steps in the selection routine algorithm. We do not

explicitly present the entire minimum cost flow selection routine pseudocode but instead identify the

changes necessary to Algorithm 2. In line 3, we focus on negative cycles instead of augmenting paths;

in line 4, the performance of the network is the minimum cost flow value; in line 9, we input the

answers from Question (iv) and solve a minimum cost to time problem instead of a shortest path

problem; in lines 10 and 11, the weight and processing times are calculated according to the answers

to Questions (ii) and (iii) in Table 4; and in line 12, we switch to a greater than sign to replace the less

than sign. The Minimum Cost Flow INDS Dispatching rule is then created by calling this modified

selection routine in the dispatching rule framework provided in Algorithm 1.

Customized Selection Routine for Minimum Cost Flow INDS Problems
(i) Tasks = Negative cycles C
(ii) Weights = min residual capacity of cycle C *

∑
(i,j)∈C cij

(iii) Processing time =
∑

(i,j)∈C∩A′
t
pij

(iv) Task minimizes ratio
wj

pj
= Iterative algorithm using Minimum Cost to Time calculations

Table 4: Summary of the answers needed to customize the Minimum Cost Flow Selection Routine

4.3 Shortest Path INDS Dispatching Rule

It is well known that a minimum cost flow problem can be used to solve a shortest path problem.

We use this observation and the minimum cost flow INDS dispatching rule to form the dispatching

20

rule for INDS problems with the shortest path performance metrics. We create a network where the

source node of the shortest path problem has a supply of |D| and the demand of each destination

node i ∈ D is equal to 1. The cost of all arcs are their lengths and their capacity is set equal to |D|.
The route that a unit of flow takes from the source node to destination node i ∈ D is the shortest

path to node i. Note that, given an integral flow, there are only O(|D|) number of distinct residual

capacities which implies that we need to only solve O(|D|) minimum cost to time problems for the

Shortest Path INDS Dispatching rule.

The previous discussion provides a clear approach for INDS problems where we are summing the

shortest path lengths to the multiple destinations. For the performance metric SPC, that focuses

on minimizing the maximum shortest path length to destination nodes i ∈ D (called the destination

node on the maximum shortest path i′), we know that we need to shorten the path to i′ to improve

the performance of the network. Therefore, the selection routine for this INDS problem will only

focus on the node with the current maximum shortest path length and view this as the only current

destination node. Note that this node will change over time as more arcs become operational and

the selection routine will appropriately focus on the correct single destination node (i.e., the one that

currently has the maximum shortest path length).

The implementation of the minimum cost flow INDS dispatching rule for the shortest path INDS

problems can be related to the distance label optimality conditions for shortest path problems. We

know that if the dispatching rule selects some set of arcs C∗ that form a negative cycle in the minimum

cost flow network with a residual capacity of rij, then the shortest paths of rij destination nodes will be

decreased by the length of the negative cycle. This means that the dispatching rule is measuring the

improvement in the performance of the network by the number of destination nodes whose distance

labels decrease times the amount by which they decrease.

4.4 Minimum Spanning Tree INDS Dispatching Rule

We now customize the selection routine for INDS problems with minimum spanning tree performance

metrics by utilizing the path optimality conditions: a tree T ∗ is a minimum spanning tree if and only

if for every arc (i, j) 6∈ T ∗ we have cij ≥ ck` for all arcs (k, `) in the unique path Pij from i to j in

T ∗. Without loss of generality, we assume first that a feasible minimum spanning tree exists in the

starting network G0
6.

In order to improve the network performance, we must install some non-operational arc (i, j)

whose inclusion in the network would violate the path optimality conditions. In other words, this

arc (i, j) will have a cost lower than some (k, `) ∈ Pij in the path Pij currently in the minimum

spanning tree. Therefore, we will view the tasks in the problem as non-operational arcs and measure

the improvement in the network performance as cij −max(κ,λ)∈Pij
cκλ. The processing time of a task

6If G0 does not start with a spanning tree, one can be created by connecting a new node to every node in the
network through arcs with arbitrarily high cost.

21

then simply equals the processing time of the arc. The calculations to find the next arc to be selected

become easier since we simply need to calculate the improvement for each non-operational arc and

its appropriate ratio. This calculation requires knowing the paths between each pair of nodes, which

can be done by applying a search algorithm O(|N |) times.

Table 5 presents the summary of answers for the four questions needed to customize the selection

routine. These answers are again used in the step by step algorithm for the selection routine. The

specific pseudocode is not included, due to the similarities to Algorithm 2. Instead, we outline the

differences. In line 3, the set of arcs is just a single non-operational arc; in line 4, the performance of

the network is the cost of a minimum spanning tree and the resulting network includes paths between

each set of nodes Pij; lines 5, 6, 8, and 9 are not necessary due to the linear search; line 7 should

iterate over all non-operational arcs in A′t; lines 10 and 11 should calculate the weight and processing

time according to the answers to Questions (ii) and (iii) from Table 5; and line 12 should focus on

the minimum ratio by utilizing a greater than sign to replace the less than sign.

Customized Selection Routine for Minimum Spanning Tree INDS Problems
(i) Tasks = Uninstalled arcs (i, j)
(ii) Weights = cij −max(k,l)∈Pij

ckl
(iii) Processing time = pij
(iv) Task minimizes ratio

wj

pj
= linear over all non-operational arcs, O(|N |) searches

Table 5: Summary of the answers needed to customize the Minimum Spanning Tree Selection Routine

5 Computational Results

We now present the results of case studies testing the performance of the INDS dispatching rules

on realistic data sets. INDS problems can be applied to a wide range of real-life applications. For

these case studies, we focus on realistic networks representing the power and telecommunications

infrastructures of lower Manhattan in New York City. These data sets were created through close

collaboration with the infrastructure managers (see Lee et al. [21]). Through the application of an

INDS model, we create restoration plans (what to repair, who performs the repair, and when the

repair is performed) for different damage scenarios, performance metrics, and objective functions.

The focus of these computational tests, in contrast to Nurre et al. [28], is to capture the performance

of the dispatching rule framework on a wide variety of different damage scenarios and performance

metrics. Nurre et al. [28] only focus on a single damage scenario for this data set.

The Manhattan power network has |N | = 1603 nodes and |A0 ∪ A′0| = 2621 arcs. We note

that this power network does not include any temporary design alternatives (power shunts) as was

included in [28], but instead only considers repairing damaged arcs as design options. This network

has 14 supply nodes and 134 demand nodes. By applying network expansion techniques (see Section

22

2.1), we can model this network, when appropriate, as one with either or both a single supply node

and single demand node. The Manhattan telecommunications network has |N | = 547 nodes and

|A0 ∪A′0| = 548. The maximum flow, minimum cost flow, and shortest path performance metrics are

tested on instances based on the power network. The minimum spanning tree performance metric is

tested on instances based on the telecommunications network. The specific procedures to determine

the set of damaged arcs for each performance metric will be discussed in their respective subsections.

Each damaged arc is assigned a random processing time equal to 1, 2, or 3 time periods. We test

these scenarios using 1, 2, and 3 machines which is representative of the machines used in Lee et al.

[20], and correspond to sets of trained power work crews. The objective function value and elapsed

time needed to arrive at a solution is captured for each run of the dispatching rules. These values are

benchmarked against the objective function value and elapsed time of IP formulations solved using

CPLEX 12.0 by calculating the optimality gap (percentage difference) between the objective function

values found. The IP formulations use a time-indexed formulation of the scheduling decisions; full

details of these formulations can be found in the Appendix. A time limit of 4 hours is set and the

heuristic solution is fed as a warm start (initial feasible integer solution). We experimented with the

probing parameter for the 4 hour time limit tests but found no significant improvement and therefore

use the default CPLEX settings. We further consider the use of CPLEX as a real-time heuristic

by setting time limits of 5 minutes (300 seconds) and 30 minutes (1800 seconds) and focusing the

search on obtaining high-quality solutions (CPLEX parameter MIPEmphasis set to 1 focusing on

finding feasible solutions). We have experimented with the MIPEmphasis parameter focusing on

optimality and found that the focus on feasibility produces higher quality solutions. All tests for both

the dispatching rules and IP formulations were performed on a laptop with 2.16 GHz Intel Core 2

Duo Processor with 3GB of RAM, which is representative of the computing resources present among

infrastructure managers. Also, note that, for the motivating application of infrastructure restoration,

decision-makers may not have access to commercial optimization software packages (due to license

costs) or open-source optimization packages (due to the required technical support in utilizing them).

Therefore, the dispatching rules, from an application perspective, are a very important alternative to

solving integer programming formulations of INDS problems.

The Cumulative objective function time horizon T is set to 60 for all performance metrics, which

is identical to the horizons used by Cavdaroglu et al. [6] and Nurre et al. [28]. The Cmax-Threshold

objective function desired network performance values are set to represent re-establishing 75% of the

‘disrupted’ performance. In other words, we examine the best possible performance in the network

with all arcs operational and then set our performance threshold to be the (current performance in

the damaged network) + 75%(best performance-current performance). We further test the maximum

flow performance metrics for a desired network performance value of 100% of the best performance,

since these will be critical in the instance generation for the minimum cost flow and shortest path

performance metrics.

23

Dispatching Rule CPLEX Heuristics CPLEX 12.0
Machines Percentage Time (s) Gap (%) 300s Gap (%) 1800s Gap (%) Time (s) Gap (%)

1
25% 28.75 0.72% 1.98% 0.50% 12,335.11 0.34%
50% 31.97 0.07% 0.10% 0.04% 5,178.08 0.03%
75% 19.33 0.40% 20.83%†3 1.06% 14,400.00 0.40%

2
25% 32.13 0.85% 12.05% 2.61% 14,400.00 0.66%
50% 68.10 0.15% -†5 0.22% 7,363.34 0.03%
75% 43.22 0.39% -†5 1.13% 12,100.49 0.27%

3
25% 29.33 0.61% 13.97%†1 8.87% 14,400.00 0.51%
50% 139.59 0.67% -†5 1.05% 14,400.00 0.46%
75% 57.45 0.51% -†5 10.93%†2 14,400.00 0.35%

Table 6: Pm|MF |Cumulative computational results comparing the performance of the dispatching
rule, CPLEX heuristics, and CPLEX 12.0.
†i signifies that i out of 5 instances did not find a feasible solution and therefore are not incorporated
in the average calculation.

5.1 Maximum Flow Performance Metric

We test the Manhattan power network with maximum flow performance metrics for many different

scenarios. We define the set of damaged arcs in A′0 by randomly selecting 25%, 50%, and 75% of

the arcs. Five random instances are created for each of these levels of damage and tests were run on

each instance for each number of machines. Each instance is tested for the Cumulative, 75% Cmax-

Threshold, and 100% Cmax-Threshold objective functions. The results are presented in Tables 6, 7, 8,

for Cumulative, Cmax-Threshold 75% and Cmax-Threshold 100%, respectively.

Each row in the table shows the average time and optimality gap over the 5 random instances.

When running the IP formulations, if CPLEX could not find the optimal solution within the set time

limit of 4 hours, we capture both the best known feasible solution (lower bound) and the current

relaxed solution value (upper bound). If the optimal solution is found, then the lower bound and

upper bound are equal.

For each of the heuristics (dispatching rule, CPLEX with 5 minute time limit, and CPLEX with

30 minute time limit), we capture the best known feasible integer solution and benchmark this value

against the upper bound found during the CPLEX 4 hour run. An optimality gap is then calculated

by taking the percentage difference between these two values. Therefore, if CPLEX was unable to

find an optimal solution within the given 4 hour time limit, the heuristic optimality gaps are an

overestimate of the actual optimality gap value, since the upper bound from CPLEX is a relaxed

value. We note that since the dispatching rule solution was fed as a warm start, the optimality gap

of CPLEX with the 4 hour time limit will always be closer to 0% than that of the dispatching rule.

In Table 6, we see that the dispatching rule arrives at near optimal solutions in less than 2.5

minutes and in some cases as quick as 20 seconds. Both CPLEX heuristics do not perform well,

with the dispatching rule always finding a higher quality solution (smaller optimality gap). For the 5

24

Dispatching Rule CPLEX Heuristics CPLEX 12.0
Machines Percentage Time (s) Gap (%) 300s Gap (%) 1800s Gap (%) Time (s) Gap (%)

1
25% 18.90 2.34% 0.00% 0.00% 1.37 0.00%
50% 61.35 1.32% 0.00% 0.00% 3.79 0.00%
75% 87.02 0.36% 0.00% 0.00% 8.29 0.00%

2
25% 16.63 3.27% 0.91% 0.91% 2,881.07 0.91%
50% 57.87 1.82% 0.27% 0.27% 2,888.42 0.27%
75% 81.84 0.70% 0.22% 0.22% 3,916.89 0.22%

3
25% 18.77 6.36% 1.33% 1.33% 2,882.46 1.33%
50% 82.56 1.56% 0.00% 0.00% 98.60 0.00%
75% 98.73 0.88% 0.71% 0.71% 11,521.32 0.71%

Table 7: Pm|MF |Cmax − Threshold computational results comparing the performance of the dis-
patching rule, CPLEX heuristics, and CPLEX 12.0 for the 75% threshold.

Dispatching Rule CPLEX Heuristics CPLEX 12.0
Machines Percentage Time (s) Gap (%) 300s Gap (%) 1800s Gap (%) Time (s) Gap (%)

1
25% 21.03 4.88% 0.00% 0.00% 1.61 0.00%
50% 112.35 6.99% 0.00% 0.00% 1,347.62 0.00%
75% 130.07 7.11% 1.51% 1.51% 13, 759.31∗2 1.33%∗2

2
25% 18.93 6.70% 0.98% 0.98% 6,155.98 0.98%
50% 83.55 10.81% 4.17% 4.17% 14,400.00 3.44%
75% 136.73 11.05% 5.86% 5.86% 14,400.00 3.17%

3
25% 16.68 10.01% 3.77% 3.77% 8,677.14 2.34%
50% 75.89 11.46% 4.78% 4.62% 14,400.00 3.50%
75% 121.09 12.04% 7.31% 6.74% 14,400.00 3.15%

Table 8: Pm|MF |Cmax − Threshold computational results comparing the performance of the dis-
patching rule, CPLEX heuristics, and CPLEX 12.0 for the 100% threshold.
∗2 Two of the 5 instances ran into memory errors. The solution and time right before running into
the memory errors were captured and averaged into the values displayed.

25

minute heuristic, it is often the case that no feasible integer solution is identified. Further, the full 4

hour run of CPLEX 12.0 often does not determine the optimal solution within the time limit and tends

to only identify solutions with slightly better objectives than the one returned by the dispatching rule.

Tables 7 and 8 indicate that CPLEX performs much better on the Cmax-Threshold objective than

the Cumulative objective for the maximum flow performance metric, which can be partially attributed

to the compactness of the Cmax-Threshold IP formulation. The dispatching rule still delivers solutions

of reasonably high quality in under 2 minutes for both the 75% and 100% Cmax-Threshold objectives.

The gaps for the 75% Cmax-Threshold objective vary from under 1% to 6.36%. The gaps for the

dispatching rule do increase to around 10% for the 100% Cmax-Threshold objective; however, CPLEX

also struggles with these instances as the time limit is reached on some instances. Therefore, the

maximum flow dispatching rule is a robust real-time algorithm for INDS problems that can be applied

to instances with either the Cumulative or Cmax-Threshold objectives.

5.2 Minimum Cost Flow Performance Metric

We test the minimum cost flow performance metric on instances that are based on the ending network

resulting from the maximum flow 100% Cmax-Threshold INDS problem. In other words, we create a

damage instance in the network, determine a solution (through the use of the dispatching rule) to the

associated maximum flow 100% Cmax-Threshold INDS problem, and then view this network as the

starting network of the minimum cost flow INDS problem. This ensures that a feasible flow exists in

the starting network (since all demand can be met) and also means that slightly less than 25%, 50%,

and 75% of the network is damaged.

The motivation for this generation procedure is that it mimics a potential approach of power

infrastructure managers when repairing damage to their network. The first ‘phase’ of the approach is

an immediate restoration phase which focuses on restoring all power as quickly as possible, i.e., the

maximum flow 100% Cmax-Threshold objective INDS problem. Once this phase is complete, the focus

then shifts to a recovery phase that seeks to improve the operational characteristics of the current

network. This would correspond to the operational costs of meeting demand in the network, implying

that our network performance metric will be the minimum cost flow metric.

Table 9 shows the results for the minimum cost flow performance metric with the Cumulative

objective. These results indicate that the dispatching rule arrives at near-optimal solutions within,

on average, 0.2% of the lower bound on the optimal solution. The 5 minute CPLEX heuristic performs

well for smaller damage (25%) but struggles with the larger damage scenarios. The 30 minute CPLEX

heuristic performs comparable to the dispatching rule; however, we note that the dispatching rule

takes less computational time and determines better solutions for the largest amount of damage

(75%) without requiring the use of a commercial software package. Further, we note that for the

instances with large amounts of damage (50% and 75%), CPLEX does not always determine the

optimal solution within the 4 hour time limit.

26

Dispatching Rule CPLEX Heuristics CPLEX 12.0
Machines Percentage Time (s) Gap (%) 300s Gap (%) 1800s Gap (%) Time (s) Gap (%)

1
25% 530.32 0.05% 0.03% 0.00% 1,231.73 0.00%
50% 479.12 0.08% 0.43% 0.03% 13,038.57 0.02%
75% 336.10 0.12% 3.84% 0.14% 14,400.00 0.09%

2
25% 872.37 0.05% 0.18% 0.01% 2,845.95 0.00%
50% 871.60 0.09% 7.96% 0.07% 11,156.28 0.01%
75% 621.17 0.15% 5.66% 0.81% 14,400.00 0.12%

3
25% 1,263.40 0.05% 0.49% 0.02% 3,868.60 0.00%
50% 1,199.96 0.09% 9.88% 0.11% 11,933.47 0.01%
75% 886.28 0.15% 7.13% 1.02% 14,400.00 0.13%

Table 9: Pm|MCF |Cumulative computational results comparing the performance of the dispatching
rule, CPLEX heuristics, and CPLEX 12.0.

Dispatching Rule CPLEX 12.0
Machines Percentage Time (s) Gap (%) Time (s) Gap (%)

1
25% 785.41 1.90% 1.11 0.00%
50% 1,017.60 1.95% 1.29 0.00%
75% 957.72 2.09% 1.72 0.00%

2
25% 786.58 4.02% 3.64 0.00%
50% 1,016.83 10.51% 2.37 0.00%
75% 953.65 14.76% 1.42 0.00%

3
25% 784.22 6.00% 1.69 0.00%
50% 1,015.84 13.24% 1.61 0.00%
75% 947.52 17.25% 1.92 0.00%

Table 10: Pm|MCF |Cmax − Threshold computational results comparing the performance of the
dispatching rule and CPLEX 12.0.

27

Table 10 shows the results for the minimum cost performance metric with Cmax-Threshold objec-

tive, where we seek to repair 75% of the rise in cost due to the damage in the network. CPLEX 12.0

provides the optimal solution extremely quickly for this set of instances. The dispatching rule provides

solutions of high-quality for the single-machine setting. The computational time requirements of the

dispatching rule for the minimum cost flow Cmax-Threshold objective is quite similar to those for the

minimum cost flow Cumulative objective. We exclude the CPLEX heuristic columns in this table, as

they would be identical to the CPLEX 12.0 columns, due to the quick computational time needed.

5.3 Shortest Path Performance Metric

We test the shortest path performance metric with multiple destinations on the same set of damage

instances that were used for the minimum cost flow performance metric tests. The main difference is

that each demand node in the infrastructure network is viewed as a destination node for the shortest

path performance metric. A super-supply node is added that connects to each supply node and,

therefore, the network performance metric is the sum of the shortest path lengths from some supply

node to each demand node. Note that a path must exist to each of these destination nodes in the

initial operational network, because the instance was generated by meeting 100% of demand in the

network.

Dispatching Rule CPLEX Heuristics CPLEX 12.0
Machines Percentage Time (s) Gap (%) 300s Gap (%) 1800s Gap (%) Time (s) Gap (%)

1
25% 99.96 0.64% 0.00% 0.00% 199.50 0.00%
50% 97.61 0.25% 0.04% 0.03% 14,400.00 0.03%
75% 65.36 0.57% 0.14% 0.07% 14,400.00 0.06%

2
25% 104.90 1.85% 0.01% 0.00% 530.30 0.00%
50% 114.35 1.77% 0.18% 0.00% 2,730.73 0.00%
75% 66.09 2.25% 6.21% 0.08% 13,154.02 0.02%

3
25% 84.47 2.40% 0.07% 0.00% 1,634.27 0.00%
50% 108.73 3.14% 2.18% 0.15% 14,290.50 0.01%
75% 60.25 3.66% 8.99% 0.23% 14,400.00 0.05%

Table 11: Pm|
∑
SP |Cumulative computational results comparing the performance of the dispatch-

ing rule, CPLEX heuristics, and CPLEX 12.0.

Table 11 shows the results for the tests on the INDS problem with the sum of shortest path lengths

to multiple destinations performance metric with Cumulative objective. The dispatching rule arrives

at near-optimal solutions in less than 2 minutes, with gaps less than 3.7% for all instances. The

two CPLEX heuristics also perform well; however, the 5 minute heuristic struggles with the larger

damage percentages. The 4 hour CPLEX run (CPLEX 12.0 column) does find the optimal solution

for instances with 25% damage in under 30 minutes but fails to determine the optimal solution within

the 4 hour time limit for almost all instances with larger amounts of damage.

28

Dispatching Rule CPLEX 12.0
Machines Percentage Time (s) Gap (%) Time (s) Gap (%)

1
25% 112.83 1.94% 1.11 0.00%
50% 157.71 3.35% 1.29 0.00%
75% 148.65 3.66% 1.72 0.00%

2
25% 114.64 5.51% 3.64 0.00%
50% 161.08 4.45% 2.37 0.00%
75% 148.77 4.23% 1.42 0.00%

3
25% 112.75 3.50% 1.69 0.00%
50% 158.99 5.18% 1.61 0.00%
75% 150.12 5.70% 1.92 0.00%

Table 12: Pm|
∑
SP |Cmax − Threshold computational results comparing the performance of the

dispatching rule and CPLEX 12.0.

Table 12 shows the results of the tests for the INDS problem with the sum of shortest path

lengths to multiple destinations performance metric with Cmax-Threshold objective with a desired

Cmax-Threshold performance value set to 75% of the performance increase due to damage. Similar

to the results found for the minimum cost flow Cmax-Threshold instances, CPLEX 12.0 arrives at the

optimal solution extremely quickly. The dispatching rule does yield solutions that are near optimal

in under 3 minutes for these instances.

5.4 Minimum Spanning Tree Performance Metric

We test the minimum spanning tree (MST) performance metric on the Manhattan telecommunica-

tions network. This network has a topology similar to many telecommunications network: a main

‘transmission’ network that connects hub nodes in the network and then ‘star’ networks, originating

from these hub nodes, that disperse to the demand points.

The topology of the telecommunications network means that a demand point typically can only

be connected to the tree through one arc connecting it to its hub node. This implies that if this

arc is damaged, then we must repair it in order to provide services to the demand node. Due to

this structure, we damage the same percentage of arcs in the main transmission network and star

network connecting hubs to demand nodes. This means that, for example, 25% of arcs in the main

transmission network are damaged and then 25% of arcs in the star networks are damaged, resulting

in 25% of the total network damaged.

To ensure that the initial damaged network has a starting operational spanning tree, a ‘dummy’

node is added that connects to every node in the network through operational ‘dummy’ arcs. We apply

different penalty costs for the ‘dummy’ arcs for the Cumulative and the Cmax-Threshold objectives.

For the Cumulative objective, the cost of a dummy arc is set to be the maximum arc cost in the

network + 1, i.e., max(i,j)∈A0∪A′
0
cij+1. These costs ensure that a dummy arc will never be included in

29

the MST in place of an original arc in the network and, more importantly, do not skew the Cumulative

objective function as arbitrarily large dummy arc costs will drive the cost of the starting MST high,

thus artificially inflating the objective function value (decreasing the optimality gaps). For the Cmax-

Threshold objective, the dummy arc costs do not directly impact the objective function value, and

therefore are set high without affecting the optimality gaps. We set the costs of the dummy arcs to

be 1 +
∑

(i,j)∈A0∪A′
0
cij.

Dispatching Rule CPLEX 12.0
Machines Percentage Time (s) Gap (%) Time (s) Gap (%)

1
25% 8.29 8.92% -∗5 -∗5

50% 8.89 9.37% -∗5 -∗5

75% 10.66 8.87% -∗5 -∗5

2
25% 10.91 11.38% -∗5 -∗5

50% 11.78 12.62% -∗5 -∗5

75% 12.99 12.05% -∗5 -∗5

3
25% 11.17 12.21% -∗5 -∗5

50% 13.57 15.07% -∗5 -∗5

75% 15.01 14.58% -∗5 -∗5

Table 13: Pm|MST |Cumulative computational results comparing the performance of the dispatching
rule and CPLEX 12.0.
∗5 All 5 instances ran into memory errors.

For these computational tests, we utilize a multi-commodity network flow integer programming

formulation of the MST. This leads to O(|N |2) variables to represent the MST decisions for a single

time period. This means that we require O(|N |2T) variables in the integer programming formulation

of the Cumulative objective. CPLEX 12.0 runs into memory issues for all test instances of the

Cumulative problem, as shown in Table 13.

To benchmark the performance of the Cumulative MST dispatching rule, we calculate a lower

bound on the Cumulative MST by reformulating the Cmax-Threshold IP to minimize the performance

of the MST subject to the constraint that all work is completed by time T . In other words, we seek

to minimize the resulting MST from processing arcs for T time units on the available machines. The

value of this MST times the time horizon yields a lower bound for the Cumulative MST problem

because this value represents the best possible MST at the end of the horizon. CPLEX 12.0 also had

difficulty solving this problem to optimality quickly and, therefore, we used the optimal value of the

linear relaxation of this problem in place of the best possible MST. The optimality gap values for

the dispatching rule presented in Table 13 are based on this lower bound value. We show that the

dispatching rule continues to arrive at solutions very quickly, and of high quality, even with a loose

lower bound benchmark.

In Table 14, we display the results of the computational tests with the MST Cmax-Threshold

30

Dispatching Rule CPLEX Heuristics CPLEX 12.0
Machines Percentage Time (s) Gap (%) 300s Gap (%) 1800s Gap (%) Time (s) Gap (%)

1
25% 4.10 2.12% 14.21%†4 8.04%†3 14400.00 2.12%
50% 8.47 2.04% -†5 -†5 14400.00 2.04%
75% 16.33 7.22% -†5 -†5 14400.00 7.22%

2
25% 3.99 2.57% -†5 -†5 14400.00 2.57%
50% 8.46 2.36% -†5 -†5 14400.00 2.36%
75% 17.37 7.43% -†5 -†5 14400.00 7.43%

3
25% 4.63 2.59% -†5 -†5 11555.40 2.59%
50% 8.74 2.39% -†5 -†5 14400.00 2.39%
75% 15.43 7.93% -†5 -†5 14400.00 7.93%

Table 14: Pm|MST |Cmax − Threshold computational results comparing the performance of the
dispatching rule, CPLEX heuristics, and CPLEX 12.0.
†i signifies that i out of 5 instances did not find a feasible solution and therefore are not incorporated
in the average calculation.

objective. First, we notice that both CPLEX heuristics do not perform well, as in most cases no

feasible integer solution is identified. For the 4 hour run of the IP (CPLEX 12.0 column), the

dispatching rule solution was not improved upon as is shown by identical optimality gaps for the

dispatching rule and CPLEX 12.0 column. Further, we point out the quick computational time

needed for the dispatching rule to identify high quality solutions.

6 Conclusions

This paper has presented a class of problems that integrates network design and scheduling decisions.

The combination of these two sets of decisions allows for a realistic modeling of many real-world

applications, such as infrastructure restoration and humanitarian logistics. We considered INDS

problems with parallel identical machines and network performance metrics based on classic network

flow problems. These performance metrics were then incorporated into objective functions focusing

on the Cumulative performance of the network over time and the amount of time required to reach a

certain Cmax-Threshold level of performance.

We provided the complexity of all INDS problems considered, showing that they were all at least

NP -hard. Certain performance metrics with the Cmax-Threshold objective were shown to not have

approximation algorithms within a factor of ln |N |, where N is the set of nodes in the network. This

motivated the need for effective heuristic algorithms for INDS problems.

We created a novel heuristic dispatching rule algorithm framework that can be applied to all

INDS problems. This dispatching rule is novel in the sense that a set of arcs are selected and

then processed by machines to become operational in the network. By looking at the optimality

conditions of the individual performance metrics, we make small customizations to the dispatching

31

rule framework to define which set of arcs should be considered and how we find the best set of arcs

to make operational. The dispatching rules were applied to determine restoration plans for many

different damage scenarios for data sets representing the power and telecommunications networks of

lower Manhattan. The dispatching rule was benchmarked against IP formulations of the problems

solved using the commercial software package CPLEX 12.0.

The results of these tests show that the dispatching rule consistently arrives at near-optimal

solutions quickly. This means that the dispatching rule can be used for both planning and real-time

situations. CPLEX 12.0 and heuristics that used CPLEX 12.0 were not capable of providing a level

of consistency across all INDS problems; the solution of many instances reached the 4 hour time

limit without verifying an optimal solution, were inhibited by memory errors, or the CPLEX-based

heuristics did not determine feasible integer solutions. This lack of consistency was especially true

when the difficulty of the problem increased (i.e., more machines and greater damage to the network).

In application areas, the speed of the dispatching rule allows for many tests with different input (i.e.,

potential damage scenarios) to be completed and analyzed in a short amount of time. In addition,

the dispatching rules do not require the use of commercial optimization software, which may not be

readily available to decision-makers in the application areas. Therefore, the dispatching rules are a

valuable tool to aid decision-makers due to their high-quality performance.

Our complexity results would extend to similar INDS problems when the processing times of

the arcs are dependent on the machine which will process them (which is referred to as unrelated

machines, or Rm, in the scheduling literature). This is because the identical machine environment

is a special case of the unrelated machine environment. Our proposed dispatching rules could be

applied to this setting by setting the processing time of an arc to be the average processing time

across machines, although we would expect these rules to perform worse. Instead, future work could

look at customizing the dispatching rules to this setting to incorporate the differences between the

machines. The integer programming formulations could be easily modified to handle the unrelated

machine environment by including the appropriate processing time in each of the machine constraints.

The INDS problems presented are a class of problems that is general enough to allow for many

future avenues of research. INDS problems should also be examined under different scheduling envi-

ronments such as parallel machines with different speeds, which captures the different skill levels of

work groups for the infrastructure restoration application. Also, these skill levels should be captured

by defining which machines can process specific tasks. Further, INDS problems could be examined

where the tasks have more requirements, such as those with precedence constraints or release dates.

Large-scale integer programming techniques should also be examined with hopes to arrive at optimal

solutions in a reasonable amount of time for INDS problems.

32

Disclaimer

The views expressed in this article are those of the authors and do not reflect the official policy or

position of the United States Air Force, Department of Defense, or the United States Government.

33

References

[1] R. Agarwal and O. Ergun, Ship scheduling and network design for cargo routing in liner shipping,

Transportation Sci 42 (2008), 175–196.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows: Theory, algorithms, and applications,

Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

[3] C.C. Ang, Optimized recovery of damaged electrical power grids, Master’s Thesis, Department

of Operations Research, Naval Postgraduate School, Monterey, California, 2006.

[4] I. Averbakh, Emergency path restoration problems, Discr Optim 9 (2012), 58–64.

[5] I. Averbakh and J. Pereira, The flowtime network construction problem, IIE Trans 44 (2012),

681–694.

[6] B. Cavdaroglu, E. Hammel, J.E. Mitchell, T.C. Sharkey, and W.A. Wallace, Integrating restora-

tion and scheduling decisions for disrupted interdependent infrastructure systems, Ann Oper Res

203 (2013), 279–294.

[7] C. Clastres, Smart grids: Another step towards competition, energy security and climate change

objectives, Energy Policy 39 (2011), 5399–5408.

[8] T.G. Crainic, Service network design in freight transportation, Eur J Oper Res 122 (2000),

272–288.

[9] R. DeBlasio and C. Tom, Standards for the smart grid, Proc 2008 IEEE Energy 2030 Conference,

Atlanta, GA, 2008, pp. 1–7.

[10] T. Elgindy, A.T. Ernst, M. Baxter, M.W.P. Savelsbergh, and T. Kalinowski, Incremental network

design with shortest paths, Technical report, CSIRO Mathematics Informatics and Statistics,

Australia, 2013, Available online at www.optimization-online.org/DB_FILE/2013/01/3752.

pdf.

[11] H. Farhangi, The path of the smart grid, IEEE Power Energy Magazine 8 (2010), 18–28.

[12] U. Feige, A threshold of ln n for approximating Set Cover, J ACM 45 (1998), 634–652.

[13] M. Glinkowski, J. Hou, and G. Rackliffe, Advances in wind energy technologies in the context of

smart grid, Proc IEEE 99 (2011), 1083–1097.

[14] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Optimization and approxi-

mation in deterministic sequencing and scheduling: A survey, Ann Discr Math 5 (1979), 287–326.

34

[15] S. Guha, A. Moss, J.S. Naor, and B. Schieber, Efficient recovery from power outage, Proc 31st

Ann ACM Symp Theory Comput (STOC), 1999, pp. 574–582.

[16] V. Guihaire and J.K. Hao, Transit network design and scheduling: A global review, Transporta-

tion Res Part A: Policy Practi 42 (2008), 1251–1273.

[17] R.M. Karp, “Reducibility among combinatorial problems,” Complexity of computer computa-

tions, R.E. Miller and J.W. Thatcher (Editors), Plenum, New York, 1972, pp. 85–103.

[18] M.F. Lai and H.K. Lo, Ferry service network design: Optimal fleet size, routing, and scheduling,

Transportation Res Part A: Policy Practi 38 (2004), 305–328.

[19] R.C. Larson, M.D. Metzger, and M.F. Cahn, Responding to emergencies: Lessons learned and

the need for analysis, Interfaces 36 (2006), 486–501.

[20] E.E. Lee, J.E. Mitchell, and W.A. Wallace, Restoration of services in interdependent infrastruc-

ture systems: A network flows approach, IEEE Trans Syst, Man, Cybernetics, Part C: Appl

Reviews 37 (2007), 1303–1317.

[21] E.E. Lee, J.E. Mitchell, and W.A. Wallace, “Network flow approaches for analyzing and managing

disruptions to interdependent infrastructure systems,” Wiley handbook of science and technology

for homeland security, J.G. Voeller (Editor), John Wiley & Sons, Inc. Hoboken, NJ, 2009, Vol. 2,

pp. 11419–1428.

[22] M. Liserre, T. Sauter, and J.Y. Hung, Future energy systems: Integrating renewable energy

sources into the smart power grid through industrial electronics, IEEE Indust Electronics Mag-

azine 4 (2010), 18–37.

[23] A. Mahmood, M. Aamir, and M.I. Anis, Design and implementation of AMR smart grid system,

Proc 2008 IEEE Electrical Power & Energy Conference, Vancouver, BC, 2008, pp. 1–6.

[24] T.C. Matisziw, A.T. Murray, and T.H. Grubesic, Strategic network restoration, Networks Spatial

Economics 10 (2010), 345–361.

[25] J.A. Momoh, Smart grid design for efficient and flexible power networks operation and control,

Proc 2009 IEEE/PES Power Syst Conference Exposition, Seattle, WA, 2009, pp. 1–8.

[26] K. Moslehi and R. Kumar, A reliability perspective of the smart grid, IEEE Trans Smart Grid 1

(2010), 57–64.

[27] G. Mulder, F. De Ridder, and D. Six, Electricity storage for grid-connected household dwellings

with PV panels, Solar Energy 84 (2010), 1284–1293.

35

[28] S.G. Nurre, B. Cavdaroglu, J.E. Mitchell, T.C. Sharkey, and W.A. Wallace, Restoring infras-

tructure systems: An integrated network design and scheduling problem, Eur J Oper Res 223

(2012), 794–806.

[29] M.L. Pinedo, Scheduling: Theory, algorithms, and systems, Springer, New York, NY, Fourth

edition 2012.

[30] R.T. Wong, A dual ascent approach for Steiner tree problems on a directed graph, Math Program

28 (1984), 271–287.

[31] N. Xu, S.D. Guikema, R.A. Davidson, L.K. Nozick, Z. Çağnan, and K. Vaziri, Optimizing schedul-

ing of post-earthquake electric power restoration tasks, Earthquake Eng & Structural Dynamics

36 (2007), 265–284.

36

Appendix

The integer programming (IP) formulation of any INDS problem includes network constraints, schedul-

ing constraints, and constraints that link these two sets of decisions. Many of the constraints are

similar for the formulations of the different performance metrics; however we present each full IP

formulation for the sake of completeness. Table 15 displays the list of all decision variables, their cor-

responding definitions, and the specific performance metrics and objectives that utilize the decision

variables.

Decision Variable Definition Problems Used
xij, xijt Continuous, Flow on arc (i, j) (at time t) MF, MCF, SP
v,vt Continuous, Maximum Flow (at time t) MF
x`ij, x

`
ijt Continuous, Flow on arc (i, j) for commodity ` (at time t) MST

ωij,ωijt Binary, equals 1 if arc (i, j) is in the MST (at time t) MST
βijt Binary, equals 1 if arc (i, j) is operational at time t All Cumulative
αµijt Binary, equals 1 if arc (i, j) is completed by machine µ at time t All Cumulative
T̄ Integer, completion time of last processed task All Cmax-Threshold
zµij Binary, equals 1 if arc (i, j) is assigned to machine µ All Cmax-Threshold

Table 15: Decision Variables used in the INDS IP formulations

Maximum Flow INDS IP Formulation

Cumulative We first present the IP formulation of Pm|MF |Cumulative. In each time period, we

seek to maximize the weighted flow between the source node S̄ and sink node S ′7, denoted as wtvt

where wt is the weight and vt is the maximum flow value for time period t. Let xijt represent the flow

on arc (i, j) at time t. Define the binary decision variable βijt to equal 1 if arc (i, j) at time period

t is operational, and 0 otherwise. Decision variable αµijt is defined to equal 1 if machine µ finishes

processing arc (i, j) at time t, and 0 otherwise. The Cumulative maximum flow IP is then as follows:

max
T∑
t=1

wtvt

subject to: (IP)∑
(S̄,j)∈A0∪A′

0

xS̄jt −
∑

(j,S̄)∈A0∪A′
0

xjS̄t = vt for t = 1, . . . , T (4)

∑
(i,j)∈A0∪A′

0

xijt −
∑

(j,i)∈A0∪A′
0

xjit = 0 for i ∈ N\{S̄, S ′}, t = 1, . . . , T (5)

7Through network expansion techniques, a network with multiple sources and sinks can be transformed into a
network with a single source and single sink.

37

∑
(S′,j)∈A0∪A′

0

xS′jt −
∑

(j,S′)∈A0∪A′
0

xjS′t = − vt for t = 1, . . . , T (6)

0 ≤ xijt ≤ uij for (i, j) ∈ A0, t = 1, . . . , T (7)

0 ≤ xijt ≤ uijβijt for (i, j) ∈ A′0, t = 1, . . . , T (8)∑
(i,j)∈A′

0

min{T,t+pij−1}∑
s=t

αµijs ≤ 1 for µ = 1, . . . ,m, t = 1, . . . , T (9)

βijt − βijt−1 −
t∑

s=1

m∑
µ=1

αµijt = 0 for (i, j) ∈ A′0, t = 1, . . . , T (10)

pij−1∑
t=1

βijt = 0 for (i, j) ∈ A′0 (11)

m∑
µ=1

pij−1∑
t=1

αµijt = 0 for (i, j) ∈ A′0 (12)

αµijt, βijt ∈ {0, 1} for (i, j) ∈ A′0, µ = 1, . . . ,m, t = 1, . . . , T. (13)

Constraints (4) - (6) are standard flow balance constraints and constraints (7) are flow capacity

constraints. The combination of these four constraints (constraints (4) - (7)) represent the network

flow constraints. Constraints (9) - (13) are the Cumulative scheduling constraints. Constraints (9)

ensure that machine is not processing more than one arc at a time. Constraints (10) transition an

arc from non-operational to operational once it has been processed. Constraints (11) and (12) ensure

that an arc cannot become operational until enough time has passed to allow for its processing, which

improves the quality of the linear programming relaxation. Constraints (8) link the scheduling and

network flow decisions by ensuring that flow can only occur on a non-operational arc if it has been

processed by a machine.

CmaxCmaxCmax-Threshold We now present the IP formulation of Pm|MF |Cmax − Threshold. We define xij

to be the flow on arc (i, j), binary zµij to equal 1 if arc (i, j) is processed by machine µ, and T̄ to

be the minimum time needed to allow the network to reach or exceed the input desired performance

value P . The IP formulation is

min T̄

subject to: (IP)∑
(S̄,j)∈A0∪A′

0

xS̄j −
∑

(j,S̄)∈A0∪A′
0

xjS̄ = v (14)

∑
(i,j)∈A0∪A′

0

xij −
∑

(j,i)∈A0∪A′
0

xji = 0 for i ∈ N\{S̄, S ′} (15)

38

∑
(S′,j)∈A0∪A′

0

xS′j −
∑

(j,S′)∈A0∪A′
0

xjS′ = − v (16)

0 ≤ xij ≤ uij for (i, j) ∈ A0 (17)

0 ≤ xij ≤ uij

m∑
µ=1

zµij for (i, j) ∈ A′0 (18)

v ≥ P (19)∑
(i,j)∈A′

0

pijzµij ≤ T̄ for µ = 1, . . . ,m (20)

m∑
µ=1

zµij ≤ 1 for (i, j) ∈ A′0 (21)

zµij ∈ {0, 1} for (i, j) ∈ A′0, µ = 1, . . . ,m. (22)

Constraints (14)-(17) are the network flow constraints, which include flow balance and flow capacity

constraints. Constraints (19)-(21) represent the Cmax-Threshold scheduling constraints and ensure

that the maximum flow meets the desired performance value, T̄ represents the largest time a machine

is processing a task, and that only one machine processes each non-operational arc. Constraints (18)

link the network flow and scheduling constraints by only allowing flow on a non-operational arc that

has been processed by a machine.

Minimum Cost Flow INDS IP Formulation

Cumulative The IP formulation of Pm|MCF |Cumulative is quite similar to the formulation of

Pm|MF |Cumulative. In fact, all necessary variables in this IP formulation have been previously

discussed (see Table 15 for a summary) and many constraints are similar. The IP formulation of this

problem is

min
T∑
t=1

wt
∑

(i,j)∈A0∪A′
0

cijxijt

subject to: (IP)∑
(i,j)∈A0∪A′

0

xijt −
∑

(j,i)∈A0∪A′
0

xjit = si for i ∈ S, t = 1, . . . , T (23)

∑
(i,j)∈A0∪A′

0

xijt −
∑

(j,i)∈A0∪A′
0

xjit = 0 for i ∈ N\{S ∪D}, t = 1, . . . , T (24)

∑
(i,j)∈A0∪A′

0

xijt −
∑

(j,i)∈A0∪A′
0

xjit = − dit for i ∈ D, t = 1, . . . , T (25)

0 ≤ xijt ≤ uij for (i, j) ∈ A0, t = 1, . . . , T (26)

39

0 ≤ xijt ≤ uijβijt for (i, j) ∈ A′0, t = 1, . . . , T (27)∑
(i,j)∈A′

0

min{T,t+pij−1}∑
s=t

αµijs ≤ 1 for µ = 1, . . . ,m, t = 1, . . . , T (28)

βijt − βijt−1 −
t∑

s=1

m∑
µ=1

αµijt = 0 for (i, j) ∈ A′0, t = 1, . . . , T (29)

pij−1∑
t=1

βijt = 0 for (i, j) ∈ A′0 (30)

m∑
µ=1

pij−1∑
t=1

αµijt = 0 for (i, j) ∈ A′0 (31)

αµijt, βijt ∈ {0, 1} for (i, j) ∈ A′0, µ = 1, . . . ,m, t = 1, . . . , T. (32)

The objective function seeks to minimize the weighted cost of flow at each time period over the set

time horizon T . Constraints (23) - (25) represent the traditional flow balance constraints for supply,

transshipment, and demand nodes and constraints (26) are the capacity constraints of operational

arcs. Constraints (27)-(32) are identical to the scheduling and linking constraints (8)-(13) found in

the maximum flow Cumulative IP formulation.

CmaxCmaxCmax-Threshold The IP formulation of Pm|MCF |Cmax − Threshold is very similar to the IP

formulation of Pm|MF |Cmax−Threshold with the main difference being that P represents a threshold

that bounds above the cost of the flow. This formulation is

min T̄

subject to: (IP)∑
(i,j)∈A0∪A′

0

xij −
∑

(j,i)∈A0∪A′
0

xji = si for i ∈ S (33)

∑
(i,j)∈A0∪A′

0

xij −
∑

(j,i)∈A0∪A′
0

xji = 0 for i ∈ N\{S ∪D} (34)

∑
(i,j)∈A0∪A′

0

xij −
∑

(j,i)∈A0∪A′
0

xji = − di for i ∈ D (35)

0 ≤ xij ≤ uij for (i, j) ∈ A0 (36)

0 ≤ xij ≤ uij

m∑
µ=1

zµij for (i, j) ∈ A′0 (37)∑
(i,j)∈A0∪A′

0

cijxij ≤ P (38)

40

∑
(i,j)∈A′

0

pijzµij ≤ T̄ for µ = 1, . . . ,m (39)

m∑
µ=1

zµij ≤ 1 for (i, j) ∈ A′0 (40)

zµij ∈ {0, 1} for (i, j) ∈ A′0, µ = 1, . . . ,m. (41)

The objective function seeks to find the minimum time T̄ that satisfies the constraints. Constraints

(33)-(35) enforce the traditional flow balance constraints. Constraints (37)-(41) are almost identical

to the scheduling and linking constraints constraints (18)-(22), found in the maximum flow Cmax-

Threshold IP formulation.

Shortest Path INDS IP Formulation

Cumulative and CmaxCmaxCmax-Threshold As described in Section 4.3, the shortest path problem can be

modeled as a minimum cost flow problem. Therefore, the shortest path INDS IP formulations are

identical to the minimum cost flow INDS IP formulations. The only alteration is that the capacity of

the arcs can be reduced to the number of demand nodes |D|, since each demand node has one unit of

demand.

Minimum Spanning Tree INDS IP Formulation

Cumulative The IP formulation for Pm|MST |Cumulative is similar to the other IP formulations

of the Cumulative objective with the exception that capturing the network performance becomes more

difficult. Due to the absence of a compact formulation for the minimum spanning tree problem, we

have adopted a multi-commodity flow problem as used by Wong [30]. This formulation has |N | − 1

commodities. Node 0 will be the supply node for all commodities and then every other node has a

demand equal to 1 for their own commodity. The integer decision variable x`ijt represents the flow

on the undirected arc (i, j) of the `-th commodity at time t and ranges between −1 and 1, where a

negative flow corresponds to sending flow from j to i. The binary decision variable ωijt is equal to 1

if arc (i, j) is in the MST at time t. The Cumulative minimum spanning tree INDS IP formulation is

then as follows:

min
T∑
t=1

wt
∑

(i,j)∈A0∪A′
0

cijωijt

subject to: (IP)∑
(i,j)∈A0∪A′

0

x`ijt −
∑

(j,i)∈A0∪A′
0

x`jit = 1 for i = 0, t = 1, . . . , T, ` = 1, . . . , |N | − 1 (42)

41

∑
(i,j)∈A0∪A′

0

x`ijt −
∑

(j,i)∈A0∪A′
0

x`jit = 0 for i ∈ N\{0}, t = 1, . . . , T, ` = 1, . . . , |N | − 1, ` 6= i (43)

∑
(i,j)∈A0∪A′

0

x`ijt −
∑

(j,i)∈A0∪A′
0

x`jit = − 1 for i ∈ N\{0}, t = 1, . . . , T, ` = 1, . . . , |N | − 1, ` = i (44)

x`ijt ≤ ωijt for (i, j) ∈ A0 ∪ A′0, t = 1, . . . , T, ` = 1, . . . , |N | − 1 (45)

−x`ijt ≤ ωijt for (i, j) ∈ A0 ∪ A′0, t = 1, . . . , T, ` = 1, . . . , |N | − 1 (46)

ωijt ≤ βijt for (i, j) ∈ A0 ∪ A′0, t = 1, . . . , T, (47)∑
(i,j)∈A′

0

min{T,t+pij−1}∑
s=t

αµijs ≤ 1 for µ = 1, . . . ,m, t = 1, . . . , T (48)

βijt − βijt−1 −
t∑

s=1

m∑
µ=1

αµijt = 0 for (i, j) ∈ A′0, t = 1, . . . , T (49)

pij−1∑
t=1

βijt = 0 for (i, j) ∈ A′0 (50)

m∑
µ=1

pij−1∑
t=1

αµijt = 0 for (i, j) ∈ A′0 (51)

αµijt, βijt ∈ {0, 1} for (i, j) ∈ A′0, µ = 1, . . . ,m, t = 1, . . . , T (52)

ωijt ∈ {0, 1} for (i, j) ∈ A0 ∪ A′0, t = 1, . . . , T. (53)

Constraints (42)-(44) represent the multi-commodity flow balance constraints. Constraints (45) and

(46) constrain the flow on an arc by the decision whether it is in the MST at this time period.

Constraints (47) link the scheduling decisions with the MST decisions, i.e., the arc (i, j) must be

operational (βijt = 1) if it is selected for inclusion in the MST. Constraints (48) - (52) represent the

Cumulative scheduling constraints.

CmaxCmaxCmax-Threshold The IP formulation of Pm|MST |Cmax− Threshold will not require the variables

representing the network performance to be indexed by t, i.e., we have a single set of MST decision

variables. Recalling that zµij equals 1 if arc (i, j) is assigned to machine µ, the IP formulation is

min T̄

subject to: (IP)∑
(i,j)∈A0∪A′

0

x`ij −
∑

(j,i)∈A0∪A′
0

x`ji = 1 for i = 0, ` = 1, . . . , |N | − 1 (54)

∑
(i,j)∈A0∪A′

0

x`ij −
∑

(j,i)∈A0∪A′
0

x`ji = 0 for i ∈ N\{0}, ` = 1, . . . , |N | − 1, ` 6= i (55)

42

∑
(i,j)∈A0∪A′

0

x`ij −
∑

(j,i)∈A0∪A′
0

x`ji = − 1 for i ∈ N\{0}, ` = 1, . . . , |N | − 1, ` = i (56)

x`ij ≤ ωij for (i, j) ∈ A0 ∪ A′0, ` = 1, . . . , |N | − 1 (57)

−x`ij ≤ ωij for (i, j) ∈ A0 ∪ A′0, ` = 1, . . . , |N | − 1 (58)

ωij ≤
m∑
µ=1

zµij for (i, j) ∈ A0 ∪ A′0 (59)∑
(i,j)∈A0∪A′

0

cijωij ≤ P (60)

∑
(i,j)∈A′

0

pijzµij ≤ T̄ for µ = 1, . . . ,m (61)

m∑
µ=1

zµij ≤ 1 for (i, j) ∈ A′0 (62)

zµij ∈ {0, 1} for (i, j) ∈ A′0, µ = 1, . . . ,m. (63)

ωij ∈ {0, 1} for (i, j) ∈ A0 ∪ A′0 (64)

The network constraints (54)-(58) representing the MST decisions remain the same as in the

Cumulative formulations except for the index t. The linking constraints (59) state that an arc cannot

be in the MST unless it has been assigned to a machine for processing. The constraint (60) ensures

that the MST value remains below the desired threshold performance value. Constraints (61)-(63)

are the Cmax-Threshold scheduling constraints.

43

