
Interactive Excel based Gantt Chart Schedule Builder

Abstract

Many scheduling dispatching rules are intuitive and processes which people utilize in every

day life. As an example, when faced with a variety of tasks due at different times one often

implements the earliest due date scheduling rule: the next task worked on is the one with the

earliest due date. Other common scheduling dispatching rules have the nice property of being

easy to understand, thereby enabling the ability to devise the rule by oneself when given the

opportunity to experiment via trial and error. This paper presents an interactive Excel based

Gantt Chart Schedule builder which enables students to experiment with building schedules for

different single and parallel machine problem instances. Instead of explicitly telling students

these common scheduling rules, the schedule builder enables students to discover the rules on

their own. Herein, we describe the functionality of the schedule builder, assess its effectiveness

via the student perception metric, and provide supplemental teaching materials enabling the use

of the schedule builder in a wide variety of classroom environments.

Keywords: Gantt Chart, Scheduling, Excel, Discovery Learning.

1 Introduction

Many of the state of the art scheduling rules and heuristics, often called dispatching rules, are concepts

adopted by people in every day life. When we ask our students how they determine which of their

homework assignments they work on next, the most frequent answer received is ‘The one due next ’.

This decision making procedure is exactly the earliest due date (EDD) rule which is indeed optimal

for the scheduling problem with one machine (e.g., one student) and the objective of minimizing

the maximum lateness (e.g., most late homework assignment) denoted 1||Lmax (see Pinedo (2012)).

The EDD dispatching rule has the nice property that it is optimal for 1||Lmax, but even more so, it

is easy to understand and intuitive for a näıve decision maker: you work on the task that has the

next earliest due date. There are a portfolio of dispatching rules which have these nice properties

and can be conveyed concisely with: next schedule the job which (i) gives you the biggest bang for

your buck (i.e., weight for time ratio, see weighted shortest processing time (WSPT)), (ii) has the

1

smallest processing time (SPT)), (iii) has the longest processing time (LPT), and (iv) proceeds the

most amount of future tasks (see largest number of successors (LNS)). While not all concise scheduling

dispatching rules are optimal rules, they otherwise have good approximation guarantees.

For an instructor these rules are desirable as a student provided with the appropriate foundational

knowledge should be able to experiment and discover these dispatching rules by oneself. If the student

doesn’t arrive at the rule exactly, he or she should be able to use trial and error to see properties of high

performing schedules. To enable this process of trial and error experimentation, we have developed

an Excel based interactive Gantt chart Schedule Builder1. The purpose of the schedule builder is to

compliment traditional lectures in a scheduling course allowing students to build Gantt charts (see

Figure 1) and instead of being explicitly told a subset of the common scheduling dispatching rules

students are able to discover and come up with the properties on their own.

The schedule builder first allows a user to input a specific scheduling problem instance with a

set number of machines, jobs, parameter values (e.g., processing times, due dates), and constraints

(e.g., precedence, preemptions). What follows, is the ability for the user to build a schedule and click

a button to measure the quality of the built schedule using objective functions consistent with the

classic scheduling book Pinedo (2012). After seeing the quality of the built schedule, the user can

interactively adjust which jobs are assigned to which machines and the corresponding sequences.

We believe that this experimental process enables students to build confidence in an enhanced

discovery teaching environment (see Manzano (2011)). Additionally, the schedule builder compliments

traditional lecture, aimed for auditory learners, and enables visual learners to see a specific schedule

and kinesthetic learners to touch and move around the jobs on different machines (see Barbe et al.

(1979)). Moreover, we have built added functionality to the schedule builder which, when provided

access, algorithmically builds a schedule based off of a selected scheduling rule. This functionality can

be revealed to students after they have successfully experimented with scheduling problem instances

seeking to discover properties and ultimately rules for building high quality schedules.

The schedule builder was first utilized in a 3 credit quarter long course (10 weeks) in Summer

2014 entitled OPER 626/LOGM 631 Scheduling Theory. This course is cross listed in the Operational

Sciences and Logistics Management departments. The intended audience is Master’s and Doctoral

students pursuing degrees in Operations Research and Logistics Management, however enrollment is

open to all graduate students and most often students from outside these two departments reside in

the Systems Engineering Department. The schedule builder was introduced to the students on the

first day of class via a demonstration by the instructor walking through the tool’s functionality. The

schedule builder specifically focuses on deterministic scheduling problems with a single machine or

parallel machine environment.

In the first homework assignment, the students were asked four similar questions. The first part of

each question asked the students to utilize the tool to find the optimal schedule for a specific scheduling

1We will continue by calling this tool the schedule builder

2

Figure 1: Example of a Gantt chart which the schedule builder enables a user to create.

problem instance. The second part of the each question asked the students to experiment with other

instances of the stated problem (i.e., the same machine environment, objective, and constraints but

different number of jobs and parameters) and notice properties present across the optimal schedules.

The third and final part of each question asked the student to devise a generic rule for solving instances

of the scheduling problem. The intent of each question was to encourage experimentation via trial

and error, enabled with the schedule builder to observe the properties of high performing schedules.

Students were asked to provide feedback on the schedule builder after this first homework and

throughout the duration of the quarter. Based on the feedback the schedule builder went through

thirteen versions. Throughout the rest of the course, the students were not explicitly asked to utilize

the tool, however it was used for in class examples and available to students for home and school use

due to the tool’s development in VBA within Excel.

The effectiveness of the tool was assessed based on the student perception metric (see Kane (2012)).

At the end of the course, a questionnaire was given to the students with questions in the following

main topic areas: (i) how they utilized the tool and frequency of use, (ii) their perception of the

usefulness of the tool, and (iii) ideas for improvement. We present the results and analysis of the

answers from this questionnaire in Section 3.

The idea of using electronic tools to aid with teaching is not a new concept. In the context of

teaching operations research and management science topics, others have used tools to aid in the

instruction of courses with topics in inventory modeling (see Liu et al. (2013)), queueing (see Leong

(2007)), decision making under uncertainty (see Chan (2013)), statistics, and operations manage-

ment. Mason (2013) developed SolverStudio which easily integrates algebraic modeling language for

mathematical programming within an Excel environment. A valuable feature of this tool is the Excel

environment catering to many users comfortable in this environment. Scheubrein and Kulturel-Konak

(2006) also maintain the spreadsheet environment by discussing a teaching tool for an MBA operations

management course where specific tips on implementing interactive tools in an operations manage-

3

ment course are discussed by Snider and Balakrishnan (2013). When teaching statistics courses, an

instructor is guided towards Enns (2008) for design of experiments, Balakrishnan and Oh (2005) for

statistical process control, and Tsai and Wardell (2006) for business statistics.

Furthermore, others have utilized tools and specific instructional methods for teaching scheduling

and project management courses. Baker (2005) created a spreadsheet based tool and Sniedovich

(2005) present a specific teaching method for the critical path method. A spreadsheet based tool

for implementing dynamic programming (DP) algorithms is presented by Raffensperger and Richard

(2005). While this tool is not solely for scheduling, DP algorithms are a common methodological

approach for solving scheduling problems, and one of the examples detailing the tool is a scheduling

problem.

There are a variety of commercial software packages with Gantt chart features (e.g., Smartsheet

(2014), TeamWeek (2014), and AIMMS (2014)). Further, included with Pinedo (2012), a common

book used for teaching a course in scheduling, are three software systems. Lekin (see Pinedo et al.

(2002)) is an older system that only runs on Windows 95, 98, and NT. While we were unable to

get the software to work due lack of compatibility with our more up to date operating systems, this

scheduling system appears to be the most similar to the scheduling tool presented herein. However

even if a user were to have access to older operating systems, the book explicitly states that the

free educational version of the tool included with purchase of Pinedo (2012) only includes a teaching

tool for job shop scheduling, whereas we consider the single machine and parallel machine scheduling

environments.

A library of Scheduling Algorithms (LiSA) (see Andresen et al. (2014)), also included with Pinedo

(2012) is a software package which can solve deterministic scheduling problems. In this system a user

inputs data associated with a scheduling problem and then selects and invokes an algorithm from

the library of choices. An output of this action is a Gantt chart visually displaying the assignment

of jobs to machines and sequence in time. TORSCHE (see Š̊ucha et al. (2006)) is another software

system eligible for download with the purchase of Pinedo (2012). This system is targeted towards

researchers to aid in their development of complex scheduling algorithms. An output of the tool is a

Gantt chart. While both of these tools fill a niche within the field of scheduling and visually display

a Gantt chart, the purpose of the software packages is not for teaching and does not allow the user to

create and develop classic scheduling rules on their own through trial and error placement of jobs to

machines. Instead these tools are more sophisticated and have built in algorithms which can be used

in conjunction with cutting edge new algorithms.

The schedule builder presented herein, embraces the idea of enhanced discovery learning (see

Manzano (2011)). With enhanced discovery learning, students are provided with enough knowledge

to provide a stepping stone between basic concepts and those which an instructor desires a student

to discover. To our knowledge, few others have considered this concept when teaching operations

research and management science courses, however Kydd (2012) utilize a interactive applet to teach

4

the basic and visual aspects of linear programming. The applet enables active learning by allowing

both student and teacher to see the impacts of adjusting components of a linear program such as the

iso-profit line.

Main Contributions: The main contributions of this paper are as follows: (i) development of an

Excel-based interactive Gantt chart schedule builder, (ii) explanation of the schedule builder as a

learning device for allowing students to discover intuitive high quality scheduling rules, (iii) measure-

ment of the effectiveness of the tool through the student perception metric and (iv) dissemination

of associated teaching materials which can be utilized in combination with the schedule builder to

provide an enhanced discovery environment.

The remainder of this paper proceeds as follows. In Section 2 we provide a detailed description

of the schedule builder and its many functions. We assess the effectiveness of the tool and provide

suggestions for use within the classroom in Section 3. We conclude in Section 4 with a summary of

the main contributions and proposals for future directions.

2 Description of the Tool

In this section, we thoroughly describe the schedule builder tool. This includes the necessary input

data, available functions, opportunities for user trial and error when building a schedule, security

features preserving the accuracy of the tool, and error checking on the schedule. The schedule builder

is developed in VBA with Excel, therefore the computing requirements for running the tool are Excel

2007, 2010, or 2013 for Microsoft Windows operating systems.

2.1 Input Data

When opening the schedule builder, we first note that the user should enable macros. At this point

two splash screens will appear, the first indicates the name of the tool and contact information, and

the second provides a high level overview of the purpose of the tool and basic instructions for getting

started. Users may click a check box if they would not like to see the second splash screen when

opening the tool in the future. However, users may get the information from this second splash screen

by clicking on the Getting Started button on the file menu ribbon specific to the schedule builder (see

Figure 2 red box).

To input a scheduling instance, a user should first input the number of machines and jobs in the

space indicated on the ribbon (see Figure 2 black dashed box). The schedule builder can accommodate

up to 4 parallel identical machines and up to 22 jobs. Next, a user should input the parameters specific

to the scheduling instance where at a minimum the processing times pj for each job j are required and

optional inputs include due date dj, weight wj, and release date rj. All values input must be divisible

5

Figure 2: Screenshot of the Main Menu with the input data for Example 1. Further, the Getting
Started button is outlined in red, Machine and Job number selection in dashed black, and the Build
Schedule button in green.

by 1
2

(i.e., 0.5, 1, 1.5, 2, . . .). Precedence constraints stipulating that job j must be completed before

job k may begin processing are allowed when the precedence check box is selected. Figure 2 shows

the input for Example 1 which will be used throughout Section 2. This example considers 3 parallel

machines, 10 jobs, precedence constraints, and the parameter values shown in Figure 2. After all data

has been input, the user should select the Build Schedule button (see Figure 2 green box).

If the box indicating that precedence constraints are present is checked, a pop-up will appear

after the Build Schedule button is pressed. As shown in Figure 3, the precedence constraints must

be entered as chains, however all traditional precedence constraints can be represented by a series of

chains. In Figure 4, we present a precedence graph for Example 1 where each job is represented as a

node and the arrows between the nodes represent the precedence relationships. As an example, from

this graph we can conclude that job 5 must be complete before job 4 begins, and also both job 6 and

job 9 must be complete before job 7 begins. We have translated this traditional precedence graph

into a series of chains in Figure 3.

2.2 Interactive Gantt Chart Functionality

After the Build Schedule button is selected and precedence constraints are entered (if applicable),

the tool takes you to the interactive Gantt chart maker (see Figure 5). Across the top is the Gantt

6

Figure 3: The pop-up which appears after the Build Schedule button is pressed if the box indicating
precedence is checked. In this pop-up the user can input the precedence relationships and select OK,
otherwise select Cancel.

1

5

2

3

4 6 7

9 10

8

Figure 4: Precedence graph for Example 1 where each job is represented as a node and the precedence
is represented by arcs. As an example, both jobs 1 and 5 must be completed prior to starting job 3.

7

chart with a time horizon out to 35 time units and rows for the number of machines selected. Below

this is space enabling the user to build a schedule from a list. At the bottom left is the list of jobs,

the associated job parameters, and blue rectangles scaled to the size of each job’s processing time.

Lastly, at the bottom right is a box which displays the objective function value for common scheduling

objectives based on the currently built schedule.

Figure 5: Interactive Gantt Chart Portion of the tool, with the Gantt chart up top, schedule build-
ing via a typed list below, jobs with associated parameters at the bottom, and objective function
calculations at the bottom right.

There are three ways to build a schedule from the input instance. Option one is to ‘drag and

drop’ the blue rectangles for a job and place them on the Gantt chart. When placing each job, it is

best to position the rectangle slightly to the right and below the desired location, at which point the

rectangle will snap to a grid. Each blue rectangle representing a job can be moved around on the

Gantt chart until the desired schedule has been completed. The second option for building a schedule

is from a list. Directly below the Gantt chart, the user can type in the job number (e.g., 7 for job 7)

8

in the row of the machine for which it should be assigned and in the desired sequence in relationship

to the other jobs. The user must then select the From List button in the top ribbon which places

the jobs accordingly. At this point, if a change is sought in the schedule the list can be updated (and

the button selected again) or the job rectangles can be dragged and dropped to new locations. The

last option for building a schedule is from a common scheduling dispatching rule. When pressed, the

From Rule button expands to a drop down list where one rule from the SPT, WSPT, LPT, EDD,

and LNS rules can be selected at which time the selected rule is executed for scheduling the jobs.

We note that this From Rule functionality can be hidden for the case when students are seeking to

discover common scheduling dispatching rules.

The placement of the full rectangles coincides with scheduling jobs in a non-preemptive environ-

ment where once a job begins processing it must continue to be processed until it is complete. We

have included functionality in the tool that allows for the preemptive environment by allowing the

processing of a job to be interrupted. In this environment, a job is finished when the sum of its pro-

cessing over all machines equals its total processing time. This interruption of jobs can be equivalently

captured by scheduling portions of a job in smaller segments or sub jobs (e.g., a job j with pj = 5

could have smaller sub jobs with processing equal to 1 and 4 or 2 and 3). In the schedule builder, if a

user clicks on the job name in the Job column a pop-up box will appear asking ‘How many segments

do you want Job j broken into?’. Acceptable inputs into the box include integer values at least equal

to 1 and no greater than 2 times the processing time of job j. A pop-up will next appear asking for

the processing time of each segment, where the smallest processing time allowed is 0.5 time units.

After this process, the rectangle to the right of the job will be broken into s rectangles, where s is

the number of segments input into the pop-up box. Further, each rectangle is scaled according to

the processing time entered. These job rectangles maintain the same functionality as the other job

rectangles as they can be ‘dragged and dropped’ or entered into the list when called by their proper

name. The name of each job segment for job j is now denoted by j.1, j.2, . . . , j.s if s > 1, otherwise

by j if s = 1. At any point if the user would like to adjust the number of segments or processing

times associated with each segment, this series of steps can be repeated. We note, consistent with

the scheduling definition of preemption, the user should be careful not to schedule any portion of a

job for processing on two machines at one time (i.e., if job j is broken into j.1 and j.2, both j.1 and

j.2 cannot be processed during any time t).

Delays or idle time are required or beneficial for some schedules. We revisit Example 1 to demon-

strate such a schedule. In Example 1 there are 3 machines available, however based on the precedence

constraints displayed in Figure 4 only two jobs, 1 and 5, are available for processing at time 0. We

then examine the release dates and job 1 is not available for processing until time 10. This results in

idle time on machines 2 and 3 for at least p5 time periods. To account for this idle time, and other

instances where delays are desired white space can be left on the schedule or slack/‘dummy’ jobs can

be introduced. Using the schedule builder, a slack job can be introduced in two ways. The first is by

9

clicking the Build Slack Job button which results in a pop-up where the processing time for this slack

job should be entered. The other option is to enter Si in the Build Schedule by List section, for slack

job i (e.g., enter S1 when introducing your first slack job). Then when clicking the From List button,

a pop-up will appear for each slack job Si asking for the processing time associated with each job.

In contrast to a real job, a slack job appears in red for ease of differentiation. We again note, that

slack jobs are not required any time a delay occurs, instead a delay can occur by not scheduling a

job on a certain machine at specific times resulting in white space. However, slack jobs are available

to explicitly input a delay and are not considered into the objective function calculations. Further, a

slack job can be removed by selecting the Remove Slack Job Button.

The other functionality of the tool can be triggered via the buttons in the top ribbon. The Reset

Schedule button moves all jobs currently placed on the Gantt chart down to their original starting

position. The Show Precedence Constraints button allows a user to see and adjust the current set

of constraints. The Calculate Schedule Results button calculates the set of objectives displayed to

the bottom right if all jobs have been placed on the Gantt chart and satisfy the constraints set (i.e.,

no job is scheduled before its release date and precedence constraints are satisfied). For information

regarding the meaning and calculation of these objectives, we point the reader to Pinedo (2012).

The Clear Jobs and Machines button resets the problem instance, taking the user back to the main

menu. Lastly, the Help button displays a pop-up box providing detailed descriptions of the schedule

builder functionality. When a user is content with a schedule that they have created it can be saved

by clicking the Save Schedule button where the options to save the schedule to pdf, a new Excel

workbook, or an existing Excel workbook are offered. We note, to save a schedule to a new or existing

workbook the user must have a check box selected trusting VBA project objects. If a user does not

currently have this check box selected a series of instructions are shown which walk the user through

the steps necessary to trust a VBA project object.

2.3 Security and Error Checking

In this subsection, we discuss the error checking in place to ensure that a built schedule is feasible and

also the security features of the tool protecting its correct usability. Error checking the feasibility of

a built schedule occurs when the user presses the Calculate Schedule Results button. At this time a

pop-up indicating an error occurs if the schedule has any of the following four characteristics. A job

does not satisfy the precedence constraints i.e., if in the precedence constraints job i proceeds job j an

error will occur if job j is scheduled to start prior to the completion of job i. A job violates its release

date, i.e., if job j is schedule to start at a time t < rj. Two jobs overlap on a machine indicating that

a machine is working on more than one job at a time. If at least one job is not scheduled. With this

last characteristic, we require all jobs, including all segments of jobs broken up for preemption and

all created slack jobs, to be placed on the Gantt chart for the results of a schedule to be calculated.

If slack jobs are no longer required the Remove Slack Job button should be utilized for elimination.

10

To ensure the integrity of the tool, we have input security features so that users do not accidentally

inhibit the proper calculation and features of the tool. The VBA code which the tool has been built

has been password protected. Cells which do not require user input have been locked. This includes

all cells on the interactive Gantt chart tab except the build a schedule by list and job parameter cells.

The job parameter cells can be adjusted if the user seeks to alter the processing time, weight, release

date, or due date of any job. Contact information is provided if a user finds bugs or has suggestions

for improvement in the Help section.

3 Use and Tool Effectiveness

In this section, we discuss ways in which we envision the use of the schedule builder within a course.

Further, we present the results of a small assessment capturing the effectiveness of the tool using the

student perception metric (see Kane (2012)).

When the schedule builder was first used within the classroom, the students in the course came

from a wide variety of backgrounds. There were Master’s Operations Research students, Master’s

Logistics students, Master’s Systems Engineering students, and a PhD Operations Research student.

We believe the schedule builder helps make differing background less of an issue as students can

visualize the concepts being introduced and more readily participate in classroom discussions. While

the schedule builder was only utilized in a course with graduate students due the authors’ institution,

we believe the tool could be easily utilized in an undergraduate course on scheduling or even within

a lecture (or lecture sequence) within a deterministic operations research course.

With this paper, we have provided a supplementary assignment which instructors can use to help

facilitate an enhanced discovery learning environment for students. The assignment is similar to the

one utilized in the Summer 2014 course with modifications made based on observations and feedback.

The assignment walks students through 4 scheduling problems asking them to first find the optimal

solution, then observe properties of the solution, experiment with other instances of the same problem,

and device a rule for solving instances of this scheduling problem based on the properties they observed

in the optimal schedules found during the experimentation phase. The key to an enhanced discovery

learning environment is that students are provided with enough foundational knowledge to properly

discover concepts. Prior to giving students the assignment provided, they should be exposed to

scheduling terminology, as in α|β|γ notation with possible inputs for each of the triplet components,

and introduced to the schedule builder in class where the instructor goes through an example similar

to those in the assignment.

Informal favorable feedback was received throughout the quarter, including suggestions for the

improvement of the tool. We formally solicited feedback from the students via an anonymous ques-

tionnaire in the last week of the course. The questions address how and how frequently students used

the tool, their perception of the tool’s effectiveness, and suggestions for improvement. The specific

11

questions asked were:

1. How frequently did you use the scheduling tool? Please indicate at which portions of the quarter.

2. What did you use the scheduling tool for? Did you just use the tool for Homework 1 or did you

also use it at other times (e.g., for other homeworks, examples from the book, . . .)?

3. Do you believe that the scheduling tool was useful for understanding the scheduling concepts?

Why or why not?

4. Did the scheduling tool enable you to more easily use trial and error to visualize and determine

properties of schedules that are good for different objectives?

5. Is the scheduling tool easy to use or did you experience difficulties?

6. Do you have suggestions for improvement regarding the scheduling tool?

7. Do you have suggestions for improvement regarding the use of the scheduling tool with this

course (e.g., use for more in class examples)?

The responses to questions 1 and 2, regarding the frequency and purpose for using the tool,

indicated that all students utilized the tool for Homework 1, the homework specifically asking students

to devise scheduling rules. The students also indicated that they utilized the tool to verify and visually

see schedules they built for other homework assignments and when studying for the final exam. One

student did indicate that he preferred using graph paper to build schedules for the course rather than

utilizing the tool. Questions 3 and 4 address the perception of students on the usefulness of the tool

for understanding concepts. All students in the course indicated that yes the tool was useful, with

supplemental feedback saying that it helped to understand how objectives are calculated and the

basic concepts in the early stages of the course. Questions 5 and 6 targeted the specific interactive

usability of the tool. The students indicated that the usability of the tool increased dramatically from

version 1 to version 13 stating that it is intuitive and easy to use. The major comment was the snap

to grid feature only occurring after clicking elsewhere in the sheet, which is a feature we are unable

to fix within the Excel framework. Further, the students indicated that they would like a feature to

save a specific schedule they built to another sheet. We have added this functionality in the final

version of the tool. The last question asking for feedback on the use of the tool in the class presented

a dichotomy with some students wanting it used for more in class examples, and others liking the use

of the tool for independent ‘play around’.

4 Conclusions

In this paper, we have described an Excel based interactive Gantt Chart schedule builder which can be

used within a course to create an enhanced discovery learning environment. This tool allows students

12

to use experimentation, through trial and error, to observe properties of high quality schedules for

various scheduling rules. This experimentation phase will hopefully enable a student to devise common

simple scheduling dispatching rules by themselves instead of being explicitly told. Based on feedback,

we believe that this tool is an effective supplement to traditional classroom instruction helping both

visual and kinesthetic learners. The tool only considers single machine and parallel machine scheduling

environments. Future research should consider expanding to include shop environments such as flow

shop, job shop, and open shop. Other scheduling problem specifics should be considered for inclusion

in the tool such as sequence dependent set up times, batch processing, machine speed, and storage

on machines. Lastly, while the tool was built in VBA, we have only thoroughly tested the tool on

Windows operating systems. Further testing and development should be conducted for building a

tool that is compatible with Mac, Linux, and Unix.

13

References

AIMMS (2014). Gantt chart object. Last accessed on July 21, 2014 at http://www.aimms.com/

aimms/user-interface/gantt-chart-object/.

Andresen, M., Bräsel, H., Engelhardt, F., and Werner, F. (2014). LiSA - A Library of Scheduling

Algorithms Handbook for Version 3.0. Fakultät für Mathematik Otto-von-Guericke Universität

Magdeburg. Last accessed on July 21, 2014 at http://www.math.uni-magdeburg.de/~werner/

handbuch-en.pdf.

Baker, B. M. (2005). Computer-aided learning and assessment for spreadsheet modeling of critical

path analysis. INFORMS Transactions on Education, 6(1):3–12. http://dx.doi.org/10.1287/

ited.6.1.3.

Balakrishnan, J. and Oh, S. L. (2005). An interactive VBA tool for teaching statistical process

control (spc) and process management issues. INFORMS Transactions on Education, 5(3):19–32.

http://dx.doi.org/10.1287/ited.5.3.19.

Barbe, W. B., Swassing, R. H., and Milone, M. N. (1979). Teaching through modality strengths:

Concepts and practices. Zaner-Bloser, Columbus, OH.

Chan, T. C. Y. (2013). Deal or no deal: A spreadsheet game to introduce decision making under

uncertainty. INFORMS Transactions on Education, 14(1):53–60. http://dx.doi.org/10.1287/

ited.2013.0104.

Enns, S. T. (2008). An interactive spreadsheet-based tool to support teaching design of experiments.

INFORMS Transactions on Education, 8(2). http://dx.doi.org/10.1287/ited.1080.0008.

Kane, T. J. (2012). Gathering Feedback for Teaching: Combining High-Quality Observations with

Student Surveys and Achievement Gains. MET Project Policy and Practice Brief. Last accessed on

August 4, 2014 at http://metproject.org/downloads/MET_Gathering_Feedback_Practioner_

Brief.pdf.

Kydd, C. T. (2012). The effectiveness of using a web-based applet to teach concepts of linear pro-

gramming: An experiment in active learning. INFORMS Transactions on Education, 12(2):78–88.

http://dx.doi.org/10.1287/ited.1110.0076.

Leong, T.-Y. (2007). Simpler spreadsheet simulation of multi-server queues. INFORMS Transactions

on Education, 7(2):172–177. http://dx.doi.org/10.1287/ited.7.2.172.

Liu, Q., Zhang, X., Liu, Y., and Lin, L. (2013). Spreadsheet inventory simulation and optimization

models and their application in a national pharmacy chain. INFORMS Transactions on Education,

14(1):13–25. http://dx.doi.org/10.1287/ited.2013.0114.

14

Manzano, R. J. (2011). Art & science of teaching / The perils and promises of discovery learning.

Promoting Respectful Schools, 69(1):86–87.

Mason, A. J. (2013). Solverstudio: A new tool for better optimisation and simulation modelling in

excel. INFORMS Transactions on Education, 14(1):45–52. http://dx.doi.org/10.1287/ited.

2013.0112.

Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems. Springer, New York, New York,

Fourth edition.

Pinedo, M. L., Chao, X., and Leung, J. (2002). LEKIN - Flexible Job-Shop Scheduling System. Last

accessed on September 23, 2014 at http://community.stern.nyu.edu/om/software/lekin/.

Raffensperger, J. F. and Richard, P. (2005). Implementing dynamic programs in spreadsheets. IN-

FORMS Transactions on Education, 5(2):25–46. http://dx.doi.org/10.1287/ited.5.2.25.

Scheubrein, R. J. and Kulturel-Konak, S. (2006). An electronic teaching assistant for basic operations

management models. INFORMS Transactions on Education, 7(1):99–105. http://dx.doi.org/

10.1287/ited.7.1.99.

Smartsheet (2014). Online gantt chart software. Last accessed on July 20, 2014 at http://www.

smartsheet.com/gantt-chart-software.

Snider, B. and Balakrishnan, J. (2013). Lessons learned from implementing web-based simulations

to teach operations management concepts. INFORMS Transactions on Education, 13(3):152–161.

http://dx.doi.org/10.1287/ited.2013.0108.

Sniedovich, M. (2005). Towards and AOA-free courseware for the critical path method. INFORMS

Transactions on Education, 5(2):47–63. http://dx.doi.org/10.1287/ited.5.2.47.

Š̊ucha, P., Kutil, M., Sojka, M., and Hanzálek, Z. (2006). TORSCHE Scheduling Toolbox for Mat-

lab. In IEEE Computer Aided Control Systems Design Symposium (CACSD’06), pages 1181–1186,

Munich, Germany.

TeamWeek (2014). A kinder, gentler gantt chart. Last accessed on July 20, 2014 at https://

teamweek.com.

Tsai, W. and Wardell, D. G. (2006). An interactive excel VBA example for teaching statistics concepts.

INFORMS Transactions on Education, 7(1):125–135. http://dx.doi.org/10.1287/ited.7.1.

125.

15

